• This record comes from PubMed

Chemical characterization and encapsulation of Ganoderma pfeifferi extract with cytotoxic properties

. 2025 ; 16 () : 1526502. [epub] 20250123

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Mushrooms of the genus Ganoderma are known for diverse biological activities, demonstrated both traditionally and experimentally. Their secondary metabolites have shown cytotoxic potential across different cancer cell lines. Besides exploration of the most active components in different species or genotypes, new formulation techniques are in development. In recent years, there has been a growing interest in the use of nanomaterials because of significant potential for pharmacology applications as substance carriers. Applying nanoparticles may enhance the medicinal effect of the mushroom substances. This study investigated the cytotoxic properties of Ganoderma species methanolic extracts against the HeLa cancer cell line. Notably, the extract obtained from Ganoderma pfeifferi demonstrated the highest activity and was further used for encapsulation within synthesized mesoporous silica nanoparticles MCM-41. Subsequently, the cytotoxic effect of the loaded MCM-41 to the free form of extract was compared. The obtained results indicate successful encapsulation, and similar activity comparing encapsulated form to free extracts (IC50 16.6 μg/mL and 20.5 μg/mL, respectively). In addition, the four unique compounds were identified as applanoxidic acid A, applanoxidic acid G, ganoderone A, and ganoderone B in the G. pfeifferi. This study is an essential prerequisite for further steps like nanoparticle functionalization for sustained or on-command delivery of these natural extracts.

See more in PubMed

Ahmad R., Muhammad R., Aslam K., Ahmed A., Mohammad A., Deya S., et al. (2021). Ganoderma lucidum (Reishi) an edible mushroom; a comprehensive and critical review of its nutritional, cosmeceutical, mycochemical, pharmacological, clinical, and toxicological properties. Phytotherapy Res. 35 (11), 6030–6062. 10.1002/ptr.7215 PubMed DOI

Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., et al. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114 (27), 10834–10843. 10.1021/ja00053a020 DOI

Chairul T. T., Hayashi Y., Nishizawa M., Tokuda H., Chairul S. M., Hayashi Y., et al. (1991). Applanoxidic acids A, B, C and D, biologically active tetracyclic triterpenes from Ganoderma applanatum. Phytochemistry 30 (12), 4105–4109. 10.1016/0031-9422(91)83476-2 DOI

Chang S. T., Wasser S. P. (2018). Current and future research trends in agricultural and biomedical applications of medicinal mushrooms and mushroom products (review). Int. J. Med. Mushrooms 20 (12), 1121–1133. 10.1615/IntJMedMushrooms.2018029378 PubMed DOI

Cheung P. C. K. (2010). The nutritional and health benefits of mushrooms. Nutr. Bull. 35 (4), 292–299. 10.1111/j.1467-3010.2010.01859.x DOI

Cör D., Knez Ž., Hrnčič M. K. (2018). Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: a review. Molecules 23 (3), 649. 10.3390/molecules23030649 PubMed DOI PMC

Elkhateeb W. A. (2023). Therapeutic values of Ganoderma oregonense and Ganoderma pfeifferi, mushrooms: a review. Open Access J. Pharm. Res. 7 (1). 10.23880/oajpr-16000276 DOI

Estepa-Fernández A., Alfonso M., Aucejo Á. M., Fernández A. G., Viso A. L., Lozano‐Torres B., et al. (2021). Senolysis reduces senescence in veins and cancer cell migration. Adv. Ther. 4 (10). 10.1002/adtp.202100149 DOI

Ferlay J., Colombet M., Soerjomataram I., Parkin D. M., Piñeros M., Znaor A., et al. (2021). Cancer statistics for the year 2020: an overview. Int. J. Cancer 149 (4), 778–789. 10.1002/ijc.33588 PubMed DOI

Galappaththi M. C. A., Patabendige N. M., Premarathne B. M., Hapuarachchi K. K., Tibpromma S., Dong-Qin D., et al. (2022). A review of Ganoderma triterpenoids and their bioactivities. Biomolecules 13 (1), 24. 10.3390/biom13010024 PubMed DOI PMC

Galiana I., Lozano-Torres B., Sancho M., Alfonso M., Bernardos A., Bisbal V., et al. (2020). Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a NanoSenolytic. J. Control. Release 323 (July), 624–634. 10.1016/j.jconrel.2020.04.045 PubMed DOI

González A. G., León F., Rivera A., Muñoz C. M., Bermejo J. (1999). Lanostanoid triterpenes from Ganoderma l ucidum . J. Nat. Prod. 62 (12), 1700–1701. 10.1021/np990295y DOI

Guedikian R., Kim B., Singh G., Alexander R. (2023). Ganoderma lingzhi (Reishi mushroom)-induced acute liver injury in the setting of alcohol use: a case report and review of the literature. Cureus 15, e45953. 10.7759/cureus.45953 PubMed DOI PMC

Guillén-Meléndez G. A., Pérez-Hernández R. A., Chávez-Montes A., Castillo-Velázquez U., Loera-Arias M. de J., Montes-de-Oca-Saucedo C. R., et al. (2024). Nanoencapsulation of extracts and isolated compounds of plant origin and their cytotoxic effects on breast and cervical cancer treatments: advantages and new challenges. Toxicon 244 (June), 107753. 10.1016/j.toxicon.2024.107753 PubMed DOI

Gündoğdu S., Özenver N. (2023). “Anticancer potential of Ganoderma lucidum and its underlying mechanisms,” in Mushrooms with therapeutic potentials (Singapore: Springer Nature Singapore; ), 221–240. 10.1007/978-981-19-9550-7_7 DOI

Jambhrunkar S., Qu Z., Popat A., Yang J., Owen N., Acauan L., et al. (2014). Effect of surface functionality of silica nanoparticles on cellular uptake and cytotoxicity. Mol. Pharm. 11 (10), 3642–3655. 10.1021/mp500385n PubMed DOI

Johra F. T., Hossain S., Jain P., Tabassum Bristy A., Emran T., Ahmed R., et al. (2023). Amelioration of CCl4-induced oxidative stress and hepatotoxicity by Ganoderma lucidum in long evans rats. Sci. Rep. 13 (1), 9909. 10.1038/s41598-023-35228-y PubMed DOI PMC

Kailasapathy K. (2009). Encapsulation technologies for functional foods and nutraceutical product development. CABI Rev. 2009 (January), 1–19. 10.1079/PAVSNNR20094033 DOI

Khan H., Reyes J. V. M., Seen T., Irefej B., Ahmad S. (2023). Herbal supplement-induced liver injury: a case report. Cureus, January 15, e33663. 10.7759/cureus.33663 PubMed DOI PMC

Kiddane A. T., Kang M.-J., Ho T. C., Getachew A. T., Prakash Patil M., Chun B.-S., et al. (2022). Anticancer and apoptotic activity in cervical adenocarcinoma HeLa using crude extract of Ganoderma applanatum. Curr. Issues Mol. Biol. 44 (3), 1012–1026. 10.3390/cimb44030067 PubMed DOI PMC

Koninti R. K., Palvai S., Satpathi S., Basu S., Hazra P. (2016). Loading of an anti-cancer drug into mesoporous silica nano-channels and its subsequent release to DNA. Nanoscale 8 (43), 18436–18445. 10.1039/C6NR06285G PubMed DOI

Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359 (6397), 710–712. 10.1038/359710a0 DOI

Kuo P.-C., Thang T. D., Huang G.-J., Ngoc N. T. B., Nguyen T. N., Yang M.-L., et al. (2016). Chemical constituents of Ganoderma pfeifferi and their inhibitory effect on nitric oxide production. Chem. Nat. Compd. 52 (5), 948–950. 10.1007/s10600-016-1829-7 DOI

Lérida-Viso A., A Estepa F., Morellá-Aucejo Á., Lozano-Torres B., Alfonso M., Blandez J. F., et al. (2022). Pharmacological senolysis reduces doxorubicin-induced cardiotoxicity and improves cardiac function in mice. Pharmacol. Res. 183 (September), 106356. 10.1016/j.phrs.2022.106356 PubMed DOI

Lérida-Viso A., Estepa-Fernández A., García-Fernández A., Martí-Centelles V., Martínez-Máñez R. (2023). Biosafety of mesoporous silica nanoparticles; towards clinical translation. Adv. Drug Deliv. Rev. 201 (October), 115049. 10.1016/j.addr.2023.115049 PubMed DOI

Li X., Wang B., Zhou S., Chen W., Chen H., Liang S., et al. (2020). Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney. J. Nanobiotechnology 18 (1), 45. 10.1186/s12951-020-00599-1 PubMed DOI PMC

Lindequist U., Jülich W.-D., Witt S. (2015). Ganoderma pfeifferi – a European relative of Ganoderma lucidum. Phytochemistry 114 (June), 102–108. 10.1016/j.phytochem.2015.02.018 PubMed DOI

Liu R.-M., Zhong J.-J. (2011). Ganoderic acid mf and S induce mitochondria mediated apoptosis in human cervical carcinoma HeLa cells. Phytomedicine 18 (5), 349–355. 10.1016/j.phymed.2010.08.019 PubMed DOI

Mazandarani A., Ali T., Mohammadnejad J., Yazdian F. (2023). Targeted anticancer drug delivery using chitosan, carbon quantum dots, and aptamers to deliver ganoderic acid and 5‐fluorouracil. Chem. and Biodivers. 20 (9), e202300659. 10.1002/cbdv.202300659 PubMed DOI

Money N. P. (2016). Are mushrooms medicinal? Fungal Biol. 120 (4), 449–453. 10.1016/j.funbio.2016.01.006 PubMed DOI

Mothana R. A. A., Awadh Ali N. A., Jansen R., Wegner U., Mentel R., Lindequist U. (2003). Antiviral lanostanoid triterpenes from the fungus Ganoderma pfeifferi. Fitoterapia 74 (1–2), 177–180. 10.1016/S0367-326X(02)00305-2 PubMed DOI

Mothana R. A. A., Jansen R., Jülich W.-D., Lindequist U. (2000). Ganomycins A and B, new antimicrobial farnesyl hydroquinones from the basidiomycete Ganoderma pfeifferi . J. Nat. Prod. 63 (3), 416–418. 10.1021/np990381y PubMed DOI

Muñoz B., Rámila A., Pérez-Pariente J., Díaz I., Vallet-Regí M. (2003). MCM-41 organic modification as drug delivery rate regulator. Chem. Mater. 15 (2), 500–503. 10.1021/cm021217q DOI

Niedermeyer T. H. J., Jira T., Lalk M., Lindequist U. (2013). Isolation of farnesylhydroquinones from the basidiomycete Ganoderma pfeifferi. Nat. Prod. Bioprospecting 3 (4), 137–140. 10.1007/s13659-013-0036-5 DOI

Niedermeyer T. H. J., Lindequist U., Mentel R., Gördes D., Schmidt E., Thurow K., et al. (2005). Antiviral terpenoid constituents of Ganoderma p feifferi . J. Nat. Prod. 68 (12), 1728–1731. 10.1021/np0501886 PubMed DOI

Noguchi M., Kakuma T., Tomiyasu K., Kurita Y., Kukihara H., Konishi F., et al. (2008). Effect of an extract of Ganoderma lucidum in men with lower urinary tract symptoms: a double-blind, placebo-controlled randomized and dose-ranging study. Asian J. Androl. 10 (4), 651–658. 10.1111/j.1745-7262.2008.00336.x PubMed DOI

Ogawa M. (2017). Mesoporous silica layer: preparation and opportunity. Chem. Rec. 17 (2), 217–232. 10.1002/tcr.201600068 PubMed DOI

Pang Z., Zhou G., Ewald J., Chang Le, Hacariz O., Basu N., et al. (2022). Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17 (8), 1735–1761. 10.1038/s41596-022-00710-w PubMed DOI

Paolino D., Mancuso A., Cristiano M. C., Froiio F., Lammari N., Celia C., et al. (2021). Nanonutraceuticals: the new frontier of supplementary food. Nanomaterials 11 (3), 792. 10.3390/nano11030792 PubMed DOI PMC

Pastorin G. (2009). Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option? Pharm. Res. 26 (4), 746–769. 10.1007/s11095-008-9811-0 PubMed DOI

Patel S., Goyal A. (2012). Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2 (1), 1–15. 10.1007/s13205-011-0036-2 PubMed DOI PMC

Peters R. J. B., Bouwmeester H., Gottardo S., Amenta V., Arena M., Brandhoff P., et al. (2016). Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci. and Technol. 54 (August), 155–164. 10.1016/j.tifs.2016.06.008 DOI

Poyatos-Racionero E., Guarí-Borràs G., Ruiz-Rico M., Morellá-Aucejo Á., Aznar E., Barat J. M., et al. (2021). Towards the enhancement of essential oil components’ antimicrobial activity using new zein protein-gated mesoporous silica microdevices. Int. J. Mol. Sci. 22 (7), 3795. 10.3390/ijms22073795 PubMed DOI PMC

Prado A. G. S., Moura A. O., Nunes A. R. (2011). Nanosized silica modified with carboxylic acid as support for controlled release of herbicides. J. Agric. Food Chem. 59 (16), 8847–8852. 10.1021/jf202509g PubMed DOI

Priyanka S., Patel S., Ranjitsinh D., Patel A. (2019). Camptothecin encapsulated into functionalized MCM-41: in vitro release study, cytotoxicity and kinetics. Mater. Sci. Eng. C 98 (May), 1014–1021. 10.1016/j.msec.2019.01.065 PubMed DOI

Rama Shankar G. S., Lavekar S. D., Sharma B. K. (2012). Traditional healing practice and folk medicines used by Mishing community of North East India. J. Ayurveda Integr. Med. 3, 124–129. 10.4103/0975-9476.100171 PubMed DOI PMC

Roth G. A., Abate D., Hassen Abate K., Abay S. M., Abbafati C., Abbasi N., et al. (2018). Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of disease study 2017. Lancet 392 (10159), 1736–1788. 10.1016/S0140-6736(18)32203-7 PubMed DOI PMC

Ru-Ming L. I. U., Ying-Bo L. I., Jian-Jiang ZHONG. (2012). Anti-proliferation and induced mitochondria-mediated apoptosis of ganoderic acid mk from Ganoderma lucidum mycelia in cervical cancer HeLa cells. Lat. Am. J. Pharm. 31 (1), 43–50.

Sarma D., Datta B., Saha A. (2018). Bioactive compounds with special references to anticancer property of oyster mushroom Pleurotus ostreatus. Jour. of Pharma. and Phy. 7 (August):2694–2698.

Schmaljohann D. (2006). Thermo- and PH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58 (15), 1655–1670. 10.1016/j.addr.2006.09.020 PubMed DOI

Sharma C., Bhardwaj N., Sharma A., Singh Tuli H., Batra P., Beniwal V., et al. (2019). Bioactive metabolites of Ganoderma lucidum: factors, mechanism and broad spectrum therapeutic potential. J. Herb. Med. 17–18 (September), 100268. 10.1016/j.hermed.2019.100268 DOI

Shiao M.-S. (2003). Natural products of the medicinal FungusGanoderma lucidum: occurrence, biological activities, and pharmacological functions. Chem. Rec. 3 (3), 172–180. 10.1002/tcr.10058 PubMed DOI

Sun-Young P., Barton M., Pendleton P. (2012). Controlled release of allyl isothiocyanate for bacteria growth management. Food control 23 (2), 478–484. 10.1016/j.foodcont.2011.08.017 DOI

Vallet-Regi M., Balas F., Arcos D. (2007). Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. 46 (40), 7548–7558. 10.1002/anie.200604488 PubMed DOI

Vallet-Regi M., Rámila A., del Real R. P., Pérez-Pariente J. (2001). A new property of MCM-41: drug delivery system. Chem. Mater. 13 (2), 308–311. 10.1021/cm0011559 DOI

Varghese R., Dalvi Y. B., Lamrood P. Y., Shinde B. P., Nair C. K. K. (2019). Historical and current perspectives on therapeutic potential of higher basidiomycetes: an overview. 3 Biotech. 9 (10), 362. 10.1007/s13205-019-1886-2 PubMed DOI PMC

Vicente C.-N., María A., Pedro A., Elena A., Dolores M. M., Ramón M.-M. (2024). In-depth study of factors affecting the formation of MCM-41-type mesoporous silica nanoparticles. Microporous Mesoporous Mater. 363 (January), 112840. 10.1016/j.micromeso.2023.112840 DOI

Wanmuang H., Leopairut J., Kositchaiwat C., Wananukul W., Bunyaratvej S. (2007). Fatal fulminant hepatitis associated with Ganoderma lucidum (lingzhi) mushroom powder. J. Med. Assoc. Thail. = Chotmaihet Thangphaet 90 (1), 179–181. PubMed

Wasser S. P. (2011). Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biotechnol. 89 (5), 1323–1332. 10.1007/s00253-010-3067-4 PubMed DOI

Yuan D., He H., Wu Y., Fan J., Cao Y. (2019). Physiologically based pharmacokinetic modeling of nanoparticles. J. Pharm. Sci. 108 (1), 58–72. 10.1016/j.xphs.2018.10.037 PubMed DOI PMC

Yue Q.-X., Song X.-Y., Ma C., Feng L.-X., Guan S.-H., Wu W.-Y., et al. (2010). Effects of triterpenes from Ganoderma lucidum on protein expression profile of HeLa cells. Phytomedicine 17 (8–9), 606–613. 10.1016/j.phymed.2009.12.013 PubMed DOI

Yuen M.-F., Philip Ip, Ng W.-K., Lai C.-L. (2004). Hepatotoxicity due to a formulation of Ganoderma lucidum (lingzhi). J. Hepatology 41 (4), 686–687. 10.1016/j.jhep.2004.06.016 PubMed DOI

Zhu H.-S., Yang X.-L., Wang L.-B., Zhao D.-X., Chen L. (2000). Effects of extracts from sporoderm-broken spores of Ganoderma lucidum on HeLa cells. Cell Biol. Toxicol. 16 (3), 201–206. 10.1023/A:1007663006548 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...