Ferromagnetically coupled tetranuclear Ni(ii)-2-oxy-aceto- or benzo-phenonate complexes

. 2025 Feb 06 ; 15 (6) : 4250-4261. [epub] 20250207

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39926231

Reaction of 2-hydroxy-acetophenone (HL) or 2-hydroxy-benzophenone (HL') with nickel(ii) acetate provides the tetrakis-[(μ3-methanolato-κ3 O:O:O)(methanol-κO)(2-oxyacetophenone-κ2 O,O')nickel(ii)], [Ni(L)(μ3-CH3O)(CH3OH)]4 (1) or tetrakis-[(μ3-methanolato-κ3 O:O:O)(aqua-κO)(2-oxybenzophenone-κ2 O,O')nickel(ii)] monohydrate, [Ni(L')(μ3-CH3O)(H2O)]4·H2O (2). Molecular structure determination demonstrates each nickel(ii) ion is six-coordinate with a distorted octahedral geometry defined by three oxygen atoms from three methoxide fragments, a methanol (1) or water (2) molecule, and two oxygen atoms from the acetophenonate (L-) or benzophenonate (L'-) ligand, such that the four nickel atoms and four methoxide groups represent a cubane-type structural topology with each methoxide fragment bridging three of the metal centers. Stabilization of the cubane core occurs via intramolecular O-H⋯O hydrogen bonds. Solid-state magnetic measurements along with computational modeling confirm dominant ferromagnetic interactions for the compounds, attributed to their cubane topology and the Ni-O-Ni angles adopting values lower than 100°. Thermogravimetric analysis (TGA) suggests thermal decomposition of the complexes with successive release of the lattice water, coordinated solvents (MeOH or H2O), OCH3 groups and fragmented ligand species, supported by differential scanning calorimetry (DSC) studies. Cyclic voltammetry reveals a quasi-reversible two electrons charge transfer process in N,N-dimethylformamide.

Zobrazit více v PubMed

Zhang W. H. Sulaiman N. B. Tio P. S. Hor T. A. CrystEngComm. 2011;13(8):2915–2922. doi: 10.1039/C0CE00831A. DOI

Lippard S. J. and Berg J. M., Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, CA, 1994

Sobota P. Coord. Chem. Rev. 2004;248:1047–1060. doi: 10.1016/j.ccr.2004.06.002. DOI

Taquet J. Siri O. Braunstein P. Welter R. Inorg. Chem. 2006;45:4668–4676. doi: 10.1021/ic060019o. PubMed DOI

Zhu L. Yao K. L. Liu Z. L. Appl. Phys. Lett. 2010;96:082115. doi: 10.1063/1.3319506. DOI

Gatteschi D. Sessoli R. Cornia A. Chem. Commun. 2000;9:725–732. doi: 10.1039/A908254I. DOI

Cavallini M. Gómez-Segura J. Ruiz-Molina D. Massi M. Albonetti C. Rovira C. Veciana J. Biscarini F. Angew. Chem., Int. Ed. 2005;44:888–892. doi: 10.1002/anie.200461554. PubMed DOI

Gatteschi D. Barra A. L. Caneschi A. Cornia A. Sessoli R. Sorace L. Coord. Chem. Rev. 2006;250:1514–1529. doi: 10.1016/j.ccr.2006.02.006. DOI

Dimakopoulou F. Efthymiou C. G. O'Malley C. Kourtellaris A. Moushi E. Tasiopooulos A. Perlepes S. P. McArdle P. Costa-Villén E. Mayans J. Papatriantafyllopoulou C. Molecules. 2022;27(15):4701. doi: 10.3390/molecules27154701. PubMed DOI PMC

Chakov N. E. Lee S. Harter A. G. Kuhns P. L. Reyes A. P. Hill S. O. Dalal N. S. Wernsdorfer W. Abboud K. A. Christou G. J. Am. Chem. Soc. 2006;128:6975–6989. doi: 10.1021/ja060796n. PubMed DOI

Zhang J. Teo P. Pattacini R. Kermagoret A. Welter R. Rogez G. Hor T. S. A. Braunstein P. Angew. Chem., Int. Ed. 2010;122:4545–4548. doi: 10.1002/ange.201001412. PubMed DOI

Kayser L. Pattacini R. Rogez G. Braunstein P. Chem. Commun. 2010;46:6461–6463. doi: 10.1039/C0CC01425G. PubMed DOI

Hameury S. Kayser L. Pattacini R. Rogez G. Wernsdorfer W. Braunstein P. Dalton Trans. 2013;42:5013–5024. doi: 10.1039/C3DT32869D. PubMed DOI

Venegas-Yazigi D. Cano J. Ruiz E. Alvarez S. Phys. B. 2006;384:123–125. doi: 10.1016/j.physb.2006.05.169. DOI

Das A. Klinke F. J. Demeshko S. Meyer S. Dechert S. Meyer F. Inorg. Chem. 2012;51:8141–8149. doi: 10.1021/ic300535d. PubMed DOI

Demeshko S. Leibeling G. Dechert S. Meyer F. Dalton Trans. 2006:3458–3465. doi: 10.1039/B517254C. PubMed DOI

Dey M. Gogoi M. Angew. Chem., Int. Ed. 2013;52:12780–12782. doi: 10.1002/anie.201304982. PubMed DOI

Pedersen K. S. Bendix J. Clérac R. Chem. Commun. 2014;50:4396–4415. doi: 10.1039/C4CC00339J. PubMed DOI

Ruettinger W. F. Ho D. M. Dismukes G. C. Inorg. Chem. 1999;8:1036–1037. doi: 10.1021/ic981145y. PubMed DOI

Halcrow M. A. Sun J. S. Huffman J. C. Christou G. Inorg. Chem. 1995;34:4167–4177. doi: 10.1021/ic00120a022. DOI

Ginsberg A. P. Bertrand J. A. Kaplan R. I. Kirkwood C. E. Martin R. L. Sherwood R. C. Inorg. Chem. 1971;10:240–246. doi: 10.1021/ic50096a006. DOI

Gladfelter W. L. Lynch M. W. Schaefer W. P. Hendrickson D. N. Gray H. B. Inorg. Chem. 1981;20:2390–2397. doi: 10.1021/ic50222a007. DOI

Beedle C. C. Henderson J. J. Ho P. C. Sayles T. Nakano M. O'Brie J. R. Heroux K. J. del Barco E. Maple M. B. Hendrickson D. N. Inorg. Chem. 2010;49:5780–5782. doi: 10.1021/ic1003947. PubMed DOI

Yang E. C. Wernsdorfer W. Zakharov L. N. Karaki Y. Yamaguchi A. Isidro R. M. Lu G. D. Wilson S. A. Rheingold A. L. Ishimoto H. Hendrickson D. N. Inorg. Chem. 2006;45:529–546. doi: 10.1021/ic050093r. PubMed DOI

Moragues-Canovas M. Helliwell M. Ricard L. Riviere E. Wernsdorfer W. Brechin E. K. Mallah T. Eur. J. Inorg. Chem. 2004;2004:2219–2222. doi: 10.1002/ejic.200400129. DOI

SalahElFallah M. Rentschler E. Caneschi A. Gatteschi D. Inorg. Chim. Acta. 1996;247:231–235. doi: 10.1016/0020-1693(96)88184-9. DOI

Papaefstathiou G. S. Escuer A. Mautner F. A. Raptopoulou C. Terzis A. Perlepes S. P. Vicente R. Eur. J. Inorg. Chem. 2005;2005:879–893. doi: 10.1002/ejic.200400670. DOI

Sen R. Mondal K. dos Santos A. M. Escobar L. B. Brandão P. Reis M. S. Lin Z. J. Mol. Struct. 2023;1274:134412. doi: 10.1016/j.molstruc.2022.134412. DOI

Buchanan R. M. Mashuta M. S. Oberhausen K. J. Richardson J. F. Li Q. Hendrickson D. N. J. Am. Chem. Soc. 1989;111:4497–4498. doi: 10.1021/ja00194a054. DOI

Halcrow M. A. Christou G. Chem. Rev. 1994;94:2421–2481. doi: 10.1021/cr00032a008. DOI

Zhao J. Ji J. Wang S. Luo Y. You Z. J. Coord. Chem. 2021;74(21–24):3127–3139. doi: 10.1080/00958972.2021.2024522. DOI

Kolodziej A. F. Prog. Inorg. Chem. 1994;41:493. doi: 10.1002/9780470166420.ch7. DOI

Karplus P. A. Pearson M. A. Hausinger R. P. Acc. Chem. Res. 1997;30:330–337. doi: 10.1021/ar960022j. DOI

Zhang S. H. Zhang Y. D. Zou H. H. Guo J. J. Li H. P. Song Y. Liang H. Inorg. Chim. Acta. 2013;396:119–125. doi: 10.1016/j.ica.2012.10.032. DOI

Lalia-Kantouri M. Gdaniec M. Choli-Papadopoulou T. Badounas A. Papadopoulos C. D. Czapik A. Geromichalos G. D. Sahpazidou D. Tsitouroudi F. F. J. Inorg. Biochem. 2012;117:25–34. doi: 10.1016/j.jinorgbio.2012.08.022. PubMed DOI

Rudbari H. A. Lloret F. Khorshidifard M. Bruno G. Julve M. RSC Adv. 2016;6:7189–7194. doi: 10.1039/C5RA25969J. DOI

Aryaeifar M. Rudbari H. A. Moreno-Pineda E. Cuevas-Vicario J. V. Paul S. Schulze M. Wernsdorfer W. Lloret F. Moini N. Blacque O. New J. Chem. 2024;48(8):3603–3613. doi: 10.1039/D3NJ05585J. DOI

Kanamori J. J. Phys. Chem. Solids. 1959;10:87–98. doi: 10.1016/0022-3697(59)90061-7. DOI

Goodenough J. B., Magnetism and the Chemical Bond, Interscience, New York, 1963

You Z. Luo Y. Herringer S. Li Y. Decurtins S. Krämer K. W. Liu S. X. Crystals. 2020;10(7):592. doi: 10.3390/cryst10070592. DOI

Andrew J. E. Blake A. B. J. Chem. Soc. A. 1969:1456–1461. doi: 10.1039/J19690001456. DOI

Andrew J. E. Blake A. B. Chem. Commun. 1967:1174–1176. doi: 10.1039/C19670001174. DOI

Ballester L. Coronado E. Gutierrez A. Monge A. Perpinan M. F. Pinilla E. Rico T. Inorg. Chem. 1992;32:2053–2056. doi: 10.1021/ic00037a014. DOI

Aurivillius B. Acta Chem. Scand. 1977;31a:501–508. doi: 10.3891/acta.chem.scand.31a-0501. DOI

Boyd P. D. W. Martin R. L. Schwarzenbach G. Aust. J. Chem. 1988;41:1449–1456. doi: 10.1071/CH9881449. DOI

Kruger A. G. Winter G. Aust. J. Chem. 1970;23:1–14. doi: 10.1071/CH9700001. DOI

Barnes J. A. Hatfield W. E. Inorg. Chem. 1971;10:2355–2357. doi: 10.1021/ic50104a063. DOI

Blake A. J. Brechin E. K. Codron A. Gould R. O. Grant C. M. Parsons S. Rawson J. M. Winpenny R. E. P. J. Chem. Soc., Chem. Commun. 1995:1983–1985. doi: 10.1039/C39950001983. DOI

Clemente-Juan J. M. Chansou B. Onnadieu B. Tuchagues J. P. Inorg. Chem. 2000;39(24):5515–5519. doi: 10.1021/ic0005442. PubMed DOI

Zianna A. Šumar Ristović M. Hatzidimitriou A. Papadopoulos C. D. Lalia-Kantouri M. J. Therm. Anal. Calorim. 2014;118:1431–1440. doi: 10.1007/s10973-014-4035-5. DOI

Belmont-Sánchez J. C. Choquesillo-Lazarte D. Navarrete-Casas R. Frontera A. Castiñeiras A. Niclós-Gutiérrez J. Matilla-Hernández A. Crystals. 2022;13(1):7. doi: 10.3390/cryst13010007. DOI

Enamullah M. Quddus M. A. Hasan M. R. Pescitelli G. Berardozzi R. Reiß G. J. Janiak C. Eur. J. Inorg. Chem. 2015;2015(16):2758–2768. doi: 10.1002/ejic.201500128. DOI

Enamullah M. Quddus M. A. Hasan M. R. Pescitelli G. Berardozzi R. Makhloufi G. Vasylyeva V. Janiak C. Dalton Trans. 2016;45:667–680. doi: 10.1039/C5DT03940A. PubMed DOI

Rotthaus O. Thomas F. Jarjayes O. Philouze C. Saint-Aman E. Pierre J. L. Chem.–Eur. J. 2006;12(26):6953–6962. doi: 10.1002/chem.200600258. PubMed DOI

Saadati A. Rudbari H. A. Aryaeifar M. Blacque O. Correia I. Islam M. K. Woschko D. Sohi T. H. H. Janiak C. Enamullah M. CrystEngComm. 2023;25:365–377. doi: 10.1039/D2CE01311H. DOI

Mim A. Enamullah M. Haque I. Mohabbat A. Janiak C. J. Mol. Struct. 2023;1291:135669. doi: 10.1016/j.molstruc.2023.135669. DOI

Yuan Y. Q. Yuan F. L. Li F. L. Hao Z. M. Guo J. Young D. J. Zhang W. H. Lang J. P. Dalton Trans. 2017;46(22):7154–7158. doi: 10.1039/C7DT01579H. PubMed DOI

Petit S. Neugebauer P. Pilet G. Chastanet G. Barra A.-L. Antunes A. B. Wernsdorfer W. Luneau D. Inorg. Chem. 2012;51(12):6645–6654. doi: 10.1021/ic3001637. PubMed DOI

Sarkar A. Basu D. Gómez-García C. J. Nayek H. P. Eur. J. Inorg. Chem. 2023;26(2):e202200565. doi: 10.1002/ejic.202200565. DOI

Nadeem M. A. Ng M. C. C. van Leusen J. Kögerler P. Stride J. A. Chem.–Eur. J. 2020;26(34):7589–7594. doi: 10.1002/chem.202000867. PubMed DOI PMC

Zhang Q. L. Wu Z. L. Xu H. Zhai B. Wang Y. F. Feng G. W. Huang Y. L. Z. Anorg. Allg. Chem. 2016;642:414–418. doi: 10.1002/zaac.201500772. DOI

Patel R. N. Patel S. K. Patel A. K. Patel N. Butcher R. J. Acta Crystallogr., Sect. E:Crystallogr. Commun. 2022;78(2):98–102. doi: 10.1107/s2056989021012408. PubMed DOI PMC

Turner M. J., McKinnon J. J., Wolff S. K., Grimwood D. J., Spackman P. R., Jayatilaka D. and Spackman M. A., CrystalExplorer17, University of Western Australia, 2017, https://crystalexplorer.net

McKinnon J. J. Spackman M. A. Mitchell A. S. Acta Crystallogr., Sect. B: Struct. Sci. 2004;60:627–668. doi: 10.1107/S0108768104020300. PubMed DOI

Spackman M. A. McKinnon J. J. CrystEngComm. 2002;4:378–392. doi: 10.1039/B203191B. DOI

McKinnon J. J. Jayatilaka D. Spackman M. A. Chem. Commun. 2007:3814–3816. doi: 10.1039/B704980C. PubMed DOI

Wang L. Wu J. Su X. Huang J. Zhang P. Zhao S. Su B. Xu B. Transition Met. Chem. 2022;47(7):275–281. doi: 10.1007/s11243-022-00501-y. DOI

Shit S. Nandy M. Rosair G. Gómez-García C. J. Almenar J. J. B. Mitra S. Polyhedron. 2013;61:73–79. doi: 10.1016/j.poly.2013.05.029. DOI

Enamullah M. Aziz T. Haque I. Mohabbat A. Kacperkiewicz A. Herbert D. E. Janiak C. J. Mol. Struct. 2024;1312:138509. doi: 10.1016/j.molstruc.2024.138509. DOI

Enamullah M. Mim A. Haque I. Sidhu B. K. Kacperkiewicz A. Herbert D. E. New J. Chem. 2023;47:21804–21814. doi: 10.1039/D3NJ04915A. DOI

Haque I. Enamullah M. Resma A. K. Jhumur N. T. Woschko D. Mohabbat A. van Leusen J. Kögerler P. Janiak C. Chem.–Asian J. 2024;19(24):e202400915. doi: 10.1002/asia.202400915. PubMed DOI

Haque I. Abdullah M. S. Islam M. K. Enamullah M. Inorg. Chim. Acta. 2023;550:121430. doi: 10.1016/j.ica.2023.121430. DOI

Wang J. Meng X. Xie W. Zhang X. Fan Y. Wang M. J. Biol. Inorg. Chem. 2021;26:205–216. doi: 10.1007/s00775-020-01846-4. PubMed DOI

Bhunia P. Maity S. Mayans J. Ghosh A. New J. Chem. 2022;46:4363–4372. doi: 10.1039/d1nj05638g. DOI

Ghosh T. K. Mahapatra P. Jana S. Ghosh A. CrystEngComm. 2019;21:4620–4631. doi: 10.1039/c9ce00574a. DOI

Herchel R. Nemec I. Machata M. Trávníček Z. Dalton Trans. 2016;45:18622–18634. doi: 10.1039/C6DT03520E. PubMed DOI

Yang E.-C. Wernsdorfer W. Hill S. Edwards R. S. Nakano M. Maccagnano S. Zakharov L. N. Rheingold A. L. Christou G. Hendrickson D. N. Polyhedron. 2003;22:1727–1733. doi: 10.1016/S0277-5387(03)00149-9. DOI

Herchel R. Nemec I. Machata M. Trávníček Z. New J. Chem. 2017;41:11258–11267. doi: 10.1039/C7NJ02281F. DOI

Gusev A. N. Nemec I. Herchel R. Baluda Y. I. Kryukova M. A. Efimov N. N. Kiskin M. A. Linert W. Polyhedron. 2021;196:115017. doi: 10.1016/j.poly.2020.115017. DOI

Ruiz E. Cano J. Alvarez S. Alemany P. J. Comput. Chem. 1999;20:1391–1400. doi: 10.1002/(sici)1096-987x(199910)20:13<1391::aid-jcc6>3.0.co;2-j. DOI

Ruiz E. Rodríguez-Fortea A. Cano J. Alvarez S. Alemany P. J. Comput. Chem. 2003;24:982–989. doi: 10.1002/jcc.10257. PubMed DOI

Stoll S. Schweiger A. J. Magn. Reson. 2006;178(1):42–55. doi: 10.1016/j.jmr.2005.08.013. PubMed DOI

Kahn O. J. Chem. Educ. 1995;72:A19. doi: 10.1021/ed072pA19.2. DOI

Bruker-AXS, APEX4 V2021.10-0, Madison, WI, USA, 2021

Dolomanov O. V. Bourhis L. J. Gildea R. J. Howard J. A. K. Puschmann H. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. PubMed DOI PMC

Spek A. L. Acta Crystallogr., Sect. D:Biol. Crystallogr. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC

Brandenburg K., Diamond (Version 4.5), Crystal and Molecular Structure Visualization, Crystal Impact – K. Brandenburg & H. Putz Gbr, Bonn, Germany, 2009–2022

Spek A. L., PLATON – A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2008

Farrugia L. J., Windows Implementation, Version 270519, University of Glasgow, Scotland, 2019

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...