Ferromagnetically coupled tetranuclear Ni(ii)-2-oxy-aceto- or benzo-phenonate complexes
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39926231
PubMed Central
PMC11804415
DOI
10.1039/d4ra08700c
PII: d4ra08700c
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Reaction of 2-hydroxy-acetophenone (HL) or 2-hydroxy-benzophenone (HL') with nickel(ii) acetate provides the tetrakis-[(μ3-methanolato-κ3 O:O:O)(methanol-κO)(2-oxyacetophenone-κ2 O,O')nickel(ii)], [Ni(L)(μ3-CH3O)(CH3OH)]4 (1) or tetrakis-[(μ3-methanolato-κ3 O:O:O)(aqua-κO)(2-oxybenzophenone-κ2 O,O')nickel(ii)] monohydrate, [Ni(L')(μ3-CH3O)(H2O)]4·H2O (2). Molecular structure determination demonstrates each nickel(ii) ion is six-coordinate with a distorted octahedral geometry defined by three oxygen atoms from three methoxide fragments, a methanol (1) or water (2) molecule, and two oxygen atoms from the acetophenonate (L-) or benzophenonate (L'-) ligand, such that the four nickel atoms and four methoxide groups represent a cubane-type structural topology with each methoxide fragment bridging three of the metal centers. Stabilization of the cubane core occurs via intramolecular O-H⋯O hydrogen bonds. Solid-state magnetic measurements along with computational modeling confirm dominant ferromagnetic interactions for the compounds, attributed to their cubane topology and the Ni-O-Ni angles adopting values lower than 100°. Thermogravimetric analysis (TGA) suggests thermal decomposition of the complexes with successive release of the lattice water, coordinated solvents (MeOH or H2O), OCH3 groups and fragmented ligand species, supported by differential scanning calorimetry (DSC) studies. Cyclic voltammetry reveals a quasi-reversible two electrons charge transfer process in N,N-dimethylformamide.
Department of Chemistry Jahangirnagar University Dhaka 1342 Bangladesh
Department of Chemistry University of Manitoba 144 Dysart Road Winnipeg Manitoba R3T 2N2 Canada
Institute of Physics of Materials Czech Academy of Sciences Žižkova 22 61662 Brno Czech Republic
Zobrazit více v PubMed
Zhang W. H. Sulaiman N. B. Tio P. S. Hor T. A. CrystEngComm. 2011;13(8):2915–2922. doi: 10.1039/C0CE00831A. DOI
Lippard S. J. and Berg J. M., Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, CA, 1994
Sobota P. Coord. Chem. Rev. 2004;248:1047–1060. doi: 10.1016/j.ccr.2004.06.002. DOI
Taquet J. Siri O. Braunstein P. Welter R. Inorg. Chem. 2006;45:4668–4676. doi: 10.1021/ic060019o. PubMed DOI
Zhu L. Yao K. L. Liu Z. L. Appl. Phys. Lett. 2010;96:082115. doi: 10.1063/1.3319506. DOI
Gatteschi D. Sessoli R. Cornia A. Chem. Commun. 2000;9:725–732. doi: 10.1039/A908254I. DOI
Cavallini M. Gómez-Segura J. Ruiz-Molina D. Massi M. Albonetti C. Rovira C. Veciana J. Biscarini F. Angew. Chem., Int. Ed. 2005;44:888–892. doi: 10.1002/anie.200461554. PubMed DOI
Gatteschi D. Barra A. L. Caneschi A. Cornia A. Sessoli R. Sorace L. Coord. Chem. Rev. 2006;250:1514–1529. doi: 10.1016/j.ccr.2006.02.006. DOI
Dimakopoulou F. Efthymiou C. G. O'Malley C. Kourtellaris A. Moushi E. Tasiopooulos A. Perlepes S. P. McArdle P. Costa-Villén E. Mayans J. Papatriantafyllopoulou C. Molecules. 2022;27(15):4701. doi: 10.3390/molecules27154701. PubMed DOI PMC
Chakov N. E. Lee S. Harter A. G. Kuhns P. L. Reyes A. P. Hill S. O. Dalal N. S. Wernsdorfer W. Abboud K. A. Christou G. J. Am. Chem. Soc. 2006;128:6975–6989. doi: 10.1021/ja060796n. PubMed DOI
Zhang J. Teo P. Pattacini R. Kermagoret A. Welter R. Rogez G. Hor T. S. A. Braunstein P. Angew. Chem., Int. Ed. 2010;122:4545–4548. doi: 10.1002/ange.201001412. PubMed DOI
Kayser L. Pattacini R. Rogez G. Braunstein P. Chem. Commun. 2010;46:6461–6463. doi: 10.1039/C0CC01425G. PubMed DOI
Hameury S. Kayser L. Pattacini R. Rogez G. Wernsdorfer W. Braunstein P. Dalton Trans. 2013;42:5013–5024. doi: 10.1039/C3DT32869D. PubMed DOI
Venegas-Yazigi D. Cano J. Ruiz E. Alvarez S. Phys. B. 2006;384:123–125. doi: 10.1016/j.physb.2006.05.169. DOI
Das A. Klinke F. J. Demeshko S. Meyer S. Dechert S. Meyer F. Inorg. Chem. 2012;51:8141–8149. doi: 10.1021/ic300535d. PubMed DOI
Demeshko S. Leibeling G. Dechert S. Meyer F. Dalton Trans. 2006:3458–3465. doi: 10.1039/B517254C. PubMed DOI
Dey M. Gogoi M. Angew. Chem., Int. Ed. 2013;52:12780–12782. doi: 10.1002/anie.201304982. PubMed DOI
Pedersen K. S. Bendix J. Clérac R. Chem. Commun. 2014;50:4396–4415. doi: 10.1039/C4CC00339J. PubMed DOI
Ruettinger W. F. Ho D. M. Dismukes G. C. Inorg. Chem. 1999;8:1036–1037. doi: 10.1021/ic981145y. PubMed DOI
Halcrow M. A. Sun J. S. Huffman J. C. Christou G. Inorg. Chem. 1995;34:4167–4177. doi: 10.1021/ic00120a022. DOI
Ginsberg A. P. Bertrand J. A. Kaplan R. I. Kirkwood C. E. Martin R. L. Sherwood R. C. Inorg. Chem. 1971;10:240–246. doi: 10.1021/ic50096a006. DOI
Gladfelter W. L. Lynch M. W. Schaefer W. P. Hendrickson D. N. Gray H. B. Inorg. Chem. 1981;20:2390–2397. doi: 10.1021/ic50222a007. DOI
Beedle C. C. Henderson J. J. Ho P. C. Sayles T. Nakano M. O'Brie J. R. Heroux K. J. del Barco E. Maple M. B. Hendrickson D. N. Inorg. Chem. 2010;49:5780–5782. doi: 10.1021/ic1003947. PubMed DOI
Yang E. C. Wernsdorfer W. Zakharov L. N. Karaki Y. Yamaguchi A. Isidro R. M. Lu G. D. Wilson S. A. Rheingold A. L. Ishimoto H. Hendrickson D. N. Inorg. Chem. 2006;45:529–546. doi: 10.1021/ic050093r. PubMed DOI
Moragues-Canovas M. Helliwell M. Ricard L. Riviere E. Wernsdorfer W. Brechin E. K. Mallah T. Eur. J. Inorg. Chem. 2004;2004:2219–2222. doi: 10.1002/ejic.200400129. DOI
SalahElFallah M. Rentschler E. Caneschi A. Gatteschi D. Inorg. Chim. Acta. 1996;247:231–235. doi: 10.1016/0020-1693(96)88184-9. DOI
Papaefstathiou G. S. Escuer A. Mautner F. A. Raptopoulou C. Terzis A. Perlepes S. P. Vicente R. Eur. J. Inorg. Chem. 2005;2005:879–893. doi: 10.1002/ejic.200400670. DOI
Sen R. Mondal K. dos Santos A. M. Escobar L. B. Brandão P. Reis M. S. Lin Z. J. Mol. Struct. 2023;1274:134412. doi: 10.1016/j.molstruc.2022.134412. DOI
Buchanan R. M. Mashuta M. S. Oberhausen K. J. Richardson J. F. Li Q. Hendrickson D. N. J. Am. Chem. Soc. 1989;111:4497–4498. doi: 10.1021/ja00194a054. DOI
Halcrow M. A. Christou G. Chem. Rev. 1994;94:2421–2481. doi: 10.1021/cr00032a008. DOI
Zhao J. Ji J. Wang S. Luo Y. You Z. J. Coord. Chem. 2021;74(21–24):3127–3139. doi: 10.1080/00958972.2021.2024522. DOI
Kolodziej A. F. Prog. Inorg. Chem. 1994;41:493. doi: 10.1002/9780470166420.ch7. DOI
Karplus P. A. Pearson M. A. Hausinger R. P. Acc. Chem. Res. 1997;30:330–337. doi: 10.1021/ar960022j. DOI
Zhang S. H. Zhang Y. D. Zou H. H. Guo J. J. Li H. P. Song Y. Liang H. Inorg. Chim. Acta. 2013;396:119–125. doi: 10.1016/j.ica.2012.10.032. DOI
Lalia-Kantouri M. Gdaniec M. Choli-Papadopoulou T. Badounas A. Papadopoulos C. D. Czapik A. Geromichalos G. D. Sahpazidou D. Tsitouroudi F. F. J. Inorg. Biochem. 2012;117:25–34. doi: 10.1016/j.jinorgbio.2012.08.022. PubMed DOI
Rudbari H. A. Lloret F. Khorshidifard M. Bruno G. Julve M. RSC Adv. 2016;6:7189–7194. doi: 10.1039/C5RA25969J. DOI
Aryaeifar M. Rudbari H. A. Moreno-Pineda E. Cuevas-Vicario J. V. Paul S. Schulze M. Wernsdorfer W. Lloret F. Moini N. Blacque O. New J. Chem. 2024;48(8):3603–3613. doi: 10.1039/D3NJ05585J. DOI
Kanamori J. J. Phys. Chem. Solids. 1959;10:87–98. doi: 10.1016/0022-3697(59)90061-7. DOI
Goodenough J. B., Magnetism and the Chemical Bond, Interscience, New York, 1963
You Z. Luo Y. Herringer S. Li Y. Decurtins S. Krämer K. W. Liu S. X. Crystals. 2020;10(7):592. doi: 10.3390/cryst10070592. DOI
Andrew J. E. Blake A. B. J. Chem. Soc. A. 1969:1456–1461. doi: 10.1039/J19690001456. DOI
Andrew J. E. Blake A. B. Chem. Commun. 1967:1174–1176. doi: 10.1039/C19670001174. DOI
Ballester L. Coronado E. Gutierrez A. Monge A. Perpinan M. F. Pinilla E. Rico T. Inorg. Chem. 1992;32:2053–2056. doi: 10.1021/ic00037a014. DOI
Aurivillius B. Acta Chem. Scand. 1977;31a:501–508. doi: 10.3891/acta.chem.scand.31a-0501. DOI
Boyd P. D. W. Martin R. L. Schwarzenbach G. Aust. J. Chem. 1988;41:1449–1456. doi: 10.1071/CH9881449. DOI
Kruger A. G. Winter G. Aust. J. Chem. 1970;23:1–14. doi: 10.1071/CH9700001. DOI
Barnes J. A. Hatfield W. E. Inorg. Chem. 1971;10:2355–2357. doi: 10.1021/ic50104a063. DOI
Blake A. J. Brechin E. K. Codron A. Gould R. O. Grant C. M. Parsons S. Rawson J. M. Winpenny R. E. P. J. Chem. Soc., Chem. Commun. 1995:1983–1985. doi: 10.1039/C39950001983. DOI
Clemente-Juan J. M. Chansou B. Onnadieu B. Tuchagues J. P. Inorg. Chem. 2000;39(24):5515–5519. doi: 10.1021/ic0005442. PubMed DOI
Zianna A. Šumar Ristović M. Hatzidimitriou A. Papadopoulos C. D. Lalia-Kantouri M. J. Therm. Anal. Calorim. 2014;118:1431–1440. doi: 10.1007/s10973-014-4035-5. DOI
Belmont-Sánchez J. C. Choquesillo-Lazarte D. Navarrete-Casas R. Frontera A. Castiñeiras A. Niclós-Gutiérrez J. Matilla-Hernández A. Crystals. 2022;13(1):7. doi: 10.3390/cryst13010007. DOI
Enamullah M. Quddus M. A. Hasan M. R. Pescitelli G. Berardozzi R. Reiß G. J. Janiak C. Eur. J. Inorg. Chem. 2015;2015(16):2758–2768. doi: 10.1002/ejic.201500128. DOI
Enamullah M. Quddus M. A. Hasan M. R. Pescitelli G. Berardozzi R. Makhloufi G. Vasylyeva V. Janiak C. Dalton Trans. 2016;45:667–680. doi: 10.1039/C5DT03940A. PubMed DOI
Rotthaus O. Thomas F. Jarjayes O. Philouze C. Saint-Aman E. Pierre J. L. Chem.–Eur. J. 2006;12(26):6953–6962. doi: 10.1002/chem.200600258. PubMed DOI
Saadati A. Rudbari H. A. Aryaeifar M. Blacque O. Correia I. Islam M. K. Woschko D. Sohi T. H. H. Janiak C. Enamullah M. CrystEngComm. 2023;25:365–377. doi: 10.1039/D2CE01311H. DOI
Mim A. Enamullah M. Haque I. Mohabbat A. Janiak C. J. Mol. Struct. 2023;1291:135669. doi: 10.1016/j.molstruc.2023.135669. DOI
Yuan Y. Q. Yuan F. L. Li F. L. Hao Z. M. Guo J. Young D. J. Zhang W. H. Lang J. P. Dalton Trans. 2017;46(22):7154–7158. doi: 10.1039/C7DT01579H. PubMed DOI
Petit S. Neugebauer P. Pilet G. Chastanet G. Barra A.-L. Antunes A. B. Wernsdorfer W. Luneau D. Inorg. Chem. 2012;51(12):6645–6654. doi: 10.1021/ic3001637. PubMed DOI
Sarkar A. Basu D. Gómez-García C. J. Nayek H. P. Eur. J. Inorg. Chem. 2023;26(2):e202200565. doi: 10.1002/ejic.202200565. DOI
Nadeem M. A. Ng M. C. C. van Leusen J. Kögerler P. Stride J. A. Chem.–Eur. J. 2020;26(34):7589–7594. doi: 10.1002/chem.202000867. PubMed DOI PMC
Zhang Q. L. Wu Z. L. Xu H. Zhai B. Wang Y. F. Feng G. W. Huang Y. L. Z. Anorg. Allg. Chem. 2016;642:414–418. doi: 10.1002/zaac.201500772. DOI
Patel R. N. Patel S. K. Patel A. K. Patel N. Butcher R. J. Acta Crystallogr., Sect. E:Crystallogr. Commun. 2022;78(2):98–102. doi: 10.1107/s2056989021012408. PubMed DOI PMC
Turner M. J., McKinnon J. J., Wolff S. K., Grimwood D. J., Spackman P. R., Jayatilaka D. and Spackman M. A., CrystalExplorer17, University of Western Australia, 2017, https://crystalexplorer.net
McKinnon J. J. Spackman M. A. Mitchell A. S. Acta Crystallogr., Sect. B: Struct. Sci. 2004;60:627–668. doi: 10.1107/S0108768104020300. PubMed DOI
Spackman M. A. McKinnon J. J. CrystEngComm. 2002;4:378–392. doi: 10.1039/B203191B. DOI
McKinnon J. J. Jayatilaka D. Spackman M. A. Chem. Commun. 2007:3814–3816. doi: 10.1039/B704980C. PubMed DOI
Wang L. Wu J. Su X. Huang J. Zhang P. Zhao S. Su B. Xu B. Transition Met. Chem. 2022;47(7):275–281. doi: 10.1007/s11243-022-00501-y. DOI
Shit S. Nandy M. Rosair G. Gómez-García C. J. Almenar J. J. B. Mitra S. Polyhedron. 2013;61:73–79. doi: 10.1016/j.poly.2013.05.029. DOI
Enamullah M. Aziz T. Haque I. Mohabbat A. Kacperkiewicz A. Herbert D. E. Janiak C. J. Mol. Struct. 2024;1312:138509. doi: 10.1016/j.molstruc.2024.138509. DOI
Enamullah M. Mim A. Haque I. Sidhu B. K. Kacperkiewicz A. Herbert D. E. New J. Chem. 2023;47:21804–21814. doi: 10.1039/D3NJ04915A. DOI
Haque I. Enamullah M. Resma A. K. Jhumur N. T. Woschko D. Mohabbat A. van Leusen J. Kögerler P. Janiak C. Chem.–Asian J. 2024;19(24):e202400915. doi: 10.1002/asia.202400915. PubMed DOI
Haque I. Abdullah M. S. Islam M. K. Enamullah M. Inorg. Chim. Acta. 2023;550:121430. doi: 10.1016/j.ica.2023.121430. DOI
Wang J. Meng X. Xie W. Zhang X. Fan Y. Wang M. J. Biol. Inorg. Chem. 2021;26:205–216. doi: 10.1007/s00775-020-01846-4. PubMed DOI
Bhunia P. Maity S. Mayans J. Ghosh A. New J. Chem. 2022;46:4363–4372. doi: 10.1039/d1nj05638g. DOI
Ghosh T. K. Mahapatra P. Jana S. Ghosh A. CrystEngComm. 2019;21:4620–4631. doi: 10.1039/c9ce00574a. DOI
Herchel R. Nemec I. Machata M. Trávníček Z. Dalton Trans. 2016;45:18622–18634. doi: 10.1039/C6DT03520E. PubMed DOI
Yang E.-C. Wernsdorfer W. Hill S. Edwards R. S. Nakano M. Maccagnano S. Zakharov L. N. Rheingold A. L. Christou G. Hendrickson D. N. Polyhedron. 2003;22:1727–1733. doi: 10.1016/S0277-5387(03)00149-9. DOI
Herchel R. Nemec I. Machata M. Trávníček Z. New J. Chem. 2017;41:11258–11267. doi: 10.1039/C7NJ02281F. DOI
Gusev A. N. Nemec I. Herchel R. Baluda Y. I. Kryukova M. A. Efimov N. N. Kiskin M. A. Linert W. Polyhedron. 2021;196:115017. doi: 10.1016/j.poly.2020.115017. DOI
Ruiz E. Cano J. Alvarez S. Alemany P. J. Comput. Chem. 1999;20:1391–1400. doi: 10.1002/(sici)1096-987x(199910)20:13<1391::aid-jcc6>3.0.co;2-j. DOI
Ruiz E. Rodríguez-Fortea A. Cano J. Alvarez S. Alemany P. J. Comput. Chem. 2003;24:982–989. doi: 10.1002/jcc.10257. PubMed DOI
Stoll S. Schweiger A. J. Magn. Reson. 2006;178(1):42–55. doi: 10.1016/j.jmr.2005.08.013. PubMed DOI
Kahn O. J. Chem. Educ. 1995;72:A19. doi: 10.1021/ed072pA19.2. DOI
Bruker-AXS, APEX4 V2021.10-0, Madison, WI, USA, 2021
Dolomanov O. V. Bourhis L. J. Gildea R. J. Howard J. A. K. Puschmann H. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. PubMed DOI PMC
Spek A. L. Acta Crystallogr., Sect. D:Biol. Crystallogr. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC
Brandenburg K., Diamond (Version 4.5), Crystal and Molecular Structure Visualization, Crystal Impact – K. Brandenburg & H. Putz Gbr, Bonn, Germany, 2009–2022
Spek A. L., PLATON – A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, 2008
Farrugia L. J., Windows Implementation, Version 270519, University of Glasgow, Scotland, 2019