Computational Analysis of the Fully Activated Orexin Receptor 2 across Various Thermodynamic Ensembles with Surface Tension Monitoring and Markov State Modeling
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39935320
DOI
10.1021/acs.jpcb.4c06767
Knihovny.cz E-zdroje
- MeSH
- fosfatidylcholiny * chemie MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- Markovovy řetězce * MeSH
- orexinové receptory * chemie metabolismus MeSH
- povrchové napětí * MeSH
- simulace molekulární dynamiky * MeSH
- termodynamika * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-palmitoyl-2-oleoylphosphatidylcholine MeSH Prohlížeč
- fosfatidylcholiny * MeSH
- lipidové dvojvrstvy MeSH
- orexinové receptory * MeSH
In this study, we investigated the stability of the fully activated conformation of the orexin receptor 2 (OX2R) embedded in a pure POPC bilayer using MD simulations. Various thermodynamic ensembles (i.e., NPT, NVT, NVE, NPAT, μVT, and NPγT) were employed to explore the dynamical heterogeneity of the system in a comprehensive way. In addition, informational similarity metrics (e.g., Jensen-Shannon divergence) as well as Markov state modeling approaches were utilized to elucidate the receptor kinetics. Special attention was paid to assessing surface tension within the simulation box, particularly under NPγT conditions, where 21 nominal surface tension constants were evaluated. Our findings suggest that traditional thermodynamic ensembles such as NPT may not adequately control physical properties of the POPC membrane, impacting the plausibility of the OX2R model. In general, the performed study underscores the importance of employing the NPγT ensemble for computational investigations of membrane-embedded receptors, as it effectively maintains zero surface tension in the simulated system. These results offer valuable insights for future research aimed at understanding receptor dynamics and designing targeted therapeutics.
Citace poskytuje Crossref.org