Thin Hydrogenated Amorphous Silicon Carbide Layers with Embedded Ge Nanocrystals
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
24-10607J
Czech Science Foundation
CZ.02.01.01/00/22_008/0004596
Operational Programme Johannes Amos Comenius financed by European Structural and In-vestment Funds and the Czech Ministry of Education, Youth and Sports
LM2023051
Czech Ministry of Education, Youth and Sports
PubMed
39940151
PubMed Central
PMC11820583
DOI
10.3390/nano15030176
PII: nano15030176
Knihovny.cz E-zdroje
The in situ combination of plasma-enhanced chemical vapor deposition (PECVD) and vacuum evaporation in the same vacuum chamber allowed us to integrate germanium nanocrystals (Ge NCs) into hydrogenated amorphous silicon carbide (a-SiC:H) thin films deposited from monomethyl silane diluted with hydrogen. Transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy were used for the microscopic characterization, while photothermal deflection spectroscopy (PDS) and near-infrared photoluminescence spectroscopy (NIR PL) were for optical characterization. The presence of Ge NCs embedded in the amorphous a-Si:C:H thin films was confirmed by TEM and EDX. The embedded Ge NCs increased optical absorption in the NIR spectral region. The quenching of a-SiC:H NIR PL due to the presence of Ge indicates that the diffusion length of free charge carriers in a-SiC:H is in the range of a few tens of nm, an order of magnitude less than in a-Si:H. The optical properties of a-SiC:H films were degraded after vacuum annealing at 550 °C.
Zobrazit více v PubMed
Torchynska T.V., Vorobiev Y.V., editors. Nanocrystals and Quantum Dots of Group IV Semiconductors. American Scientific Publishers; Stevenson Ranch, CA, USA: 2010. (Nanotechnology Book Series).
Cosentino S., Barbagiovanni E.G., Crupi I., Miritello M., Nicotra G., Spinella C., Pacifici D., Mirabella S., Terrasi A. Size Dependent Light Absorption Modulation and Enhanced Carrier Transport in Germanium Quantum Dots Devices. Sol. Energy Mater. Sol. Cells. 2015;135:22–28. doi: 10.1016/j.solmat.2014.09.012. DOI
Peng X., Tang F., Logan P. Electronic Properties of Si and Ge Pure and Core-Shell Nanowires from First Principle Study. In: Bhushan B., Luo D., Schricker S.R., Sigmund W., Zauscher S., editors. Handbook of Nanomaterials Properties. Springer; Berlin/Heidelberg, Germany: 2014. pp. 51–83.
Street R.A. Hydrogenated Amorphous Silicon. Cambridge University Press; New York, NY, USA: 1991.
Remes Z., Stuchlik J., Stuchlikova H.T., Dragounova K., Ashcheulov P., Taylor A., Mortet V., Poruba A. Optoelectronic Properties of Hydrogenated Amorphous Substoichiometric Silicon Carbide with Low Carbon Content Deposited on Semi-Transparent Boron-Doped Diamond. Phys. Status Solidi A. 2019;2019:1900241. doi: 10.1002/pssa.201900241. DOI
Kherodia A., Panchal A.K. Analysis of Thickness-Dependent Optical Parameters of a-Si:H/Nc-Si:H Multilayer Thin Films. Mater. Renew Sustain. Energy. 2017;6:23. doi: 10.1007/s40243-017-0107-3. DOI
Valencia-Grisales D.F., Reyes-Betanzo C. Tuning Electrical Properties and Achieving High TCR in P-Doped a-SixC1−x:H Films. J. Electron. Mater. 2024;53:3946–3955. doi: 10.1007/s11664-024-11166-x. DOI
Amorim M., Savio R., Massi M., Santiago H. Applications of SiC-Based Thin Films in Electronic and MEMS Devices. In: Hijikata Y., editor. Physics and Technology of Silicon Carbide Devices. InTech; London, UK: 2012.
Li S.S. Semiconductor Physical Electronics. 2nd ed. Springer+Business Media; New York, NY, USA: 2006.
García B., Estrada M., Albertin K.F., Carreño M.N.P., Pereyra I., Resendiz L. Amorphous and Excimer Laser Annealed SiC Films for TFT Fabrication. Solid State Electron. 2006;50:241–247. doi: 10.1016/j.sse.2005.11.006. DOI
Dutta A.K., Morosawa N., Hatanaka Y. Characteristics of a Single A-SiC : H/a-Si : H Heterostructure as a High-Gain Photodetector. Solid State Electron. 1992;35:1483–1488. doi: 10.1016/0038-1101(92)90087-S. DOI
Rahman M.M., Yang C.Y., Sugiarto D., Byrne A.S., Ju M., Tran K., Lui K.H., Asano T., Stickle W.F. Properties and Device Applications of Hydrogenated Amorphous Silicon Carbide Films. J. Appl. Phys. 1990;67:7065–7070. doi: 10.1063/1.345055. DOI
Thakur S., Dionne C.J., Karna P., King S.W., Lanford W., Li H., Banerjee S., Merrill D., Hopkins P.E., Giri A. Density and Atomic Coordination Dictate Vibrational Characteristics and Thermal Conductivity of Amorphous Silicon Carbide. Phys. Rev. Mater. 2022;6:094601. doi: 10.1103/PhysRevMaterials.6.094601. DOI
Buijtendorp B.T., Vollebregt S., Karatsu K., Thoen D.J., Murugesan V., Kouwenhoven K., Hähnle S., Baselmans J.J.A., Endo A. Hydrogenated Amorphous Silicon Carbide: A Low-Loss Deposited Dielectric for Microwave to Submillimeter-Wave Superconducting Circuits. Phys. Rev. Appl. 2022;18:064003. doi: 10.1103/PhysRevApplied.18.064003. DOI
Daves W., Krauss A., Behnel N., Häublein V., Bauer A., Frey L. Amorphous Silicon Carbide Thin Films (a-SiC:H) Deposited by Plasma-Enhanced Chemical Vapor Deposition as Protective Coatings for Harsh Environment Applications. Thin Solid Film. 2011;519:5892–5898. doi: 10.1016/j.tsf.2011.02.089. DOI
Li Y.-M., Catalano A., Fieselmann B.F. Film and Solar Cell Properties of A-SiC:H Alloys. MRS Proc. 1992;258:923. doi: 10.1557/PROC-258-923. DOI
Gangwar M.S., Agarwal P. Simulation and Fabrication of A-Si:H Thin-Film Solar Cells: A Comparative Study of Simulation and Experimental Results. J. Mater. Sci. Mater. Electron. 2024;35:487. doi: 10.1007/s10854-024-12149-8. DOI
Lopez-Rodriguez B., Van Der Kolk R., Aggarwal S., Sharma N., Li Z., Van Der Plaats D., Scholte T., Chang J., Gröblacher S., Pereira S.F., et al. High-Quality Amorphous Silicon Carbide for Hybrid Photonic Integration Deposited at a Low Temperature. ACS Photonics. 2023;10:3748–3754. doi: 10.1021/acsphotonics.3c00968. PubMed DOI PMC
Krivyakin G.K., Volodin V.A., Kochubei S.A., Kamaev G.N., Purkrt A., Remes Z., Fajgar R., Stuchliková T.H., Stuchlik J. Optical Properties of p–i–n Structures Based on Amorphous Hydrogenated Silicon with Silicon Nanocrystals Formed via Nanosecond Laser Annealing. Semiconductors. 2016;50:935–940. doi: 10.1134/S1063782616070101. DOI
Ha Stuchlikova T., Pic V., Ledinský M., Purkrt A., Remes Z., Stuchlik J. In-Situ Formation of Magnesium Silicide Nanoparticles on the Surface of the Hydrogenated Silicon Films. JJAP Conf. Proc. 2017;5:011303. doi: 10.56646/jjapcp.5.0_011303. DOI
Stuchlik J., Fajgar R., Remes Z., Kupcik J., Stuchlikova H. Structures with Integrated Silicon and Germanium Nanoparticles; Proceedings of the NANOCON 2017—Conference Proceedings, 9th Anniversary International Conference on Nanomaterials—Research and Application; Brno, Czech Republic. 18–20 October 2017; pp. 123–127.
Remes Z., Stuchlik J., Stuchlikova T., Kupcik J., Mortet V., Taylor A., Ashcheulov P., Volodin V.A. Electroluminescence of Thin Film p-i-n Diodes Based on a-SiC:H with Integrated Ge Nanoparticles. Eur. Phys. J. Appl. Phys. 2019;88:30302. doi: 10.1051/epjap/2020190253. DOI
Stuchlik J., Stuchlikova T.H., Cermak J., Kupcik J., Fajgar R., Remes Z. Relation between Optical and Microscopic Properties of Hydrogenated Silicon Thin Films with Integrated Germanium and Tin Nanoparticles; Proceedings of the NANOCON 2018—Conference Proceedings, 10th Anniversary International Conference on Nanomaterials—Research and Application; Brno, Czech Republic. 17–19 October 2018; pp. 83–87.
Remes Z., Babchenko O., Varga M., Stuchlik J., Jirasek V., Prajzler V., Nekvindova P., Kromka A. Preparation and Optical Properties of Nanocrystalline Diamond Coatings for Infrared Planar Waveguides. Thin Solid Film. 2016;618:130–133. doi: 10.1016/j.tsf.2016.04.026. DOI
Remes Z., Micova J., Krist P., Chvatil D., Effenberg R., Nesladek M. N-V-Related Fluorescence of the Monoenergetic High-Energy Electron-Irradiated Diamond Nanoparticles: N-V-Related Fluorescence of Electron-Irradiated Diamond Nanoparticles. Phys. Status Solidi A. 2015;212:2519–2524. doi: 10.1002/pssa.201532180. DOI
Mooney J., Kambhampati P. Get the Basics Right: Jacobian Conversion of Wavelength and Energy Scales for Quantitative Analysis of Emission Spectra. J. Phys. Chem. Lett. 2013;4:3316–3318. doi: 10.1021/jz401508t. PubMed DOI
Tompkins H.G. Spectroscopic Ellipsometry and Reflectometry: A User’s Guide. Wiley; New York, NY, USA: 1999.
Tauc J., Grigorovici R., Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B. 1966;15:627–637. doi: 10.1002/pssb.19660150224. DOI
Demichelis F., Pirri C.F., Tresso E., Amato G., Della Mea G. Hydrogen Diffusion in A-Sic:H. MRS Proc. 1990;192:739. doi: 10.1557/PROC-192-739. DOI
Vaněček M., Fric J., Crandall R.S., Mahan A.H. On the Role of Hydrogen in Metastable Defect Equilibration in Undoped Hydrogenated Amorphous Silicon. J. Non Cryst. Solids. 1993;164–166:335–338. doi: 10.1016/0022-3093(93)90558-F. DOI
Sze S.M., Ng K.K. Physics of Semiconductor Devices. 3rd ed. Wiley-Interscience; Hoboken, NJ, USA: 2007.
Staebler D.L., Wronski C.R. Reversible Conductivity Changes in Discharge-Produced Amorphous Si. Appl. Phys. Lett. 1977;31:292–294. doi: 10.1063/1.89674. DOI
Sakata I., Yamanaka M., Sekigawa T. Relationship between Carrier Diffusion Lengths and Defect Density in Hydrogenated Amorphous Silicon. J. Appl. Phys. 1997;81:1323–1330. doi: 10.1063/1.363888. DOI
Schleuning M., Kölbach M., Abdi F.F., Schwarzburg K., Stolterfoht M., Eichberger R., Van De Krol R., Friedrich D., Hempel H. Generalized Method to Extract Carrier Diffusion Length from Photoconductivity Transients: Cases of BiVO 4, Halide Perovskites, and Amorphous and Crystalline Silicon. PRX Energy. 2022;1:023008. doi: 10.1103/PRXEnergy.1.023008. DOI