Adaptability of Electrospun PVDF Nanofibers in Bone Tissue Engineering
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
project CEITEC 2020 (LQ1601)
Ministry of Education, 655 Youth and Sports of the Czech Republic
grant No. FEKT-S-23-8228
the Internal 656 Grant Agency of Brno University of Technology
MEYS CR (LM2018110)
CEITEC Nano Research Infrastructure
project (LM2023050 funded by MEYS CR
CELLIM
PubMed
39940533
PubMed Central
PMC11819756
DOI
10.3390/polym17030330
PII: polym17030330
Knihovny.cz E-resources
- Keywords
- biocompatibility, bone regeneration, bone tissue engineering, cell–substrate interactions, electrospinning, nanofiber fabrication, osteoblasts, piezoelectric polymer, plasma treatment, polyvinylidene fluoride, scaffold,
- Publication type
- Journal Article MeSH
This study focused on the development of a suitable synthetic polymer scaffold for bone tissue engineering applications within the biomedical field. The investigation centered on electrospun polyvinylidene fluoride (PVDF) nanofibers, examining their intrinsic properties and biocompatibility with the human osteosarcoma cell line Saos-2. The influence of oxygen, argon, or combined plasma treatment on the scaffold's characteristics was explored. A comprehensive design strategy is outlined for the fabrication of a suitable PVDF scaffold, encompassing the optimization of electrospinning parameters with rotating collector and plasma etching conditions to facilitate a subsequent osteoblast cell culture. The proposed methodology involves the fabrication of the PVDF tissue scaffold, followed by a rigorous series of fundamental analyses encompassing the structural integrity, chemical composition, wettability, crystalline phase content, and cell adhesion properties.
See more in PubMed
Amini A.R., Laurencin C.T., Nukavarapu S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012;40:363–408. doi: 10.1615/CritRevBiomedEng.v40.i5.10. PubMed DOI PMC
Assunção M., Dehghan-Baniani D., Yiu C.H.K., Später T., Beyer S., Blocki A. Cell-Derived Extracellular Matrix for Tissue Engineering and Regenerative Medicine. Front. Bioeng. Biotechnol. 2020;8:602009. doi: 10.3389/fbioe.2020.602009. PubMed DOI PMC
Konttinen Y.T., Kaivosoja E., Stegaev V., Wagner H.D., Levón J., Tiainen V.M., Mackiewicz Z. Regenerative Medicine: From Protocol to Patient. Springer; Dordrecht, The Netherlands: 2011. Extracellular Matrix and Tissue Regeneration; pp. 21–80.
Hussey G.S., Dziki J.L., Badylak S.F. Extracellular matrix-based materials for regenerative medicine. Nat. Rev. Mater. 2018;3:159–173. doi: 10.1038/s41578-018-0023-x. DOI
Kumar C.S.S.R. Nanotechnologies for the Life Sciences. Volume 9 Vch Verlagsgesellschaft Mbh; Weinheim, Germany: 2006. Tissue, cell, and organ engineering.
Turnbull G., Clarke J., Picard F., Riches P., Jia L., Han F., Li B., Shu W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 2018;3:278–314. doi: 10.1016/j.bioactmat.2017.10.001. PubMed DOI PMC
Zhu T., Zhou H., Chen X., Zhu Y. Recent advances of responsive scaffolds in bone tissue engineering. Front. Bioeng. Biotechnol. 2023;11:1296881. doi: 10.3389/fbioe.2023.1296881. PubMed DOI PMC
Shiva S., Raja Ganesh A.P., Bajaj G., John A.E., Maniyamparambil S.C., Kumar V.V., Ramakrishna S. A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications. J. Mater. Sci. Mater. Med. 2023;34:62. PubMed PMC
Mishra R.K., Mishra P., Verma K., Mondal A., Chaudhary R.G., Abolhasani M.M., Loganathan S. Electrospinning production of nanofibrous membranes. Environ. Chem. Lett. 2018;17:767–800. doi: 10.1007/s10311-018-00838-w. DOI
Kristak L., Antov P., Bekhta P., Lubis M.A.R., Iswanto A.H., Reh R., Sedliacik J., Savov V., Taghiyari H.R., Papadopoulos A.N., et al. Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: A review. Wood Mater. Sci. Eng. 2023;18:763–782. doi: 10.1080/17480272.2022.2056080. DOI
Russo F., Ursino C., Avruscio E., Desiderio G., Perrone A., Santoro S., Galiano F., Figoli A. Innovative Poly (Vinylidene Fluoride) (PVDF) Electrospun Nanofiber Membrane Preparation Using DMSO as a Low Toxicity Solvent. Membranes. 2020;10:36. doi: 10.3390/membranes10030036. PubMed DOI PMC
Dahlin R.L., Kasper F.K., Mikos A.G. Polymeric Nanofibers in Tissue Engineering. Tissue Eng. Part B Rev. 2011;17:349–364. doi: 10.1089/ten.teb.2011.0238. PubMed DOI PMC
Yang C., Ji J., Lv Y., Li Z., Luo D. Application of Piezoelectric Material and Devices in Bone Regeneration. Nanomaterials. 2022;12:4386. doi: 10.3390/nano12244386. PubMed DOI PMC
Vodyashkin A., Koshevaya E.D., Makeev M.O., Kezimana P. Piezoelectric PVDF and its copolymers in biomedicine: Innovations and applications. Biomater. Sci. 2024;12:5164–5185. doi: 10.1039/D4BM90080D. PubMed DOI
Ţălu Ş. Micro and Nanoscale Characterization of Three Dimensional Surfaces: Basics and Applications. Napoca Star Publishing House; Cluj-Napoca, Romania: 2015.
Li Y., Liao C., Tjong S.C. Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering. Nanomaterials. 2019;9:952. doi: 10.3390/nano9070952. PubMed DOI PMC
Wang X., Ding B., Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today. 2013;16:229–241. doi: 10.1016/j.mattod.2013.06.005. PubMed DOI PMC
Coțe A., Hozan C.T., Bulzan M., Szilagyi G. Common Scaffolds in Tissue Engineering for Bone Tissue Regeneration: A Review Article. Pharmacophore. 2023;14:46–51.
Francis A.P., Augustus A.R., Chandramohan S., Bhat S.A., Priya V.V., Rajagopalan R. A review on biomaterials-based scaffold: An emerging tool for bone tissue engineering. Mater. Today Commun. 2023;34:105124. doi: 10.1016/j.mtcomm.2022.105124. DOI
García-Gareta E., Coathup M.J., Blunn G.W. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone. 2015;81:112–121. doi: 10.1016/j.bone.2015.07.007. PubMed DOI
Xue N., Ding X., Huang R., Jiang R., Huang H., Pan X., Min W., Chen J., Duan J., Liu P., et al. Bone Tissue Engineering in the Treatment of Bone Defects. Pharmaceuticals. 2022;15:879. doi: 10.3390/ph15070879. PubMed DOI PMC
Ribeiro C., Pärssinen J., Sencadas V., Correia V., Miettinen S., Hytönen V.P., Lanceros-Méndez S. Dynamic piezoelectric stimulation enhances osteogenic differentiation of human adipose stem cells. J. Biomed. Mater. Res. Part A. 2015;103:2172–2175. doi: 10.1002/jbm.a.35368. PubMed DOI
Kitsara M., Blanquer A., Murillo G., Humblot V., De Braganca Vieira S., Nogues C., Ibanez E., Esteve J., Barrios L. Permanently hydrophilic, piezoelectric PVDF nanofibrous scaffolds promoting unaided electromechanical stimulation on osteoblasts. Nanoscale. 2019;11:8906–8917. doi: 10.1039/C8NR10384D. PubMed DOI
Pisarenko T., Papež N., Sobola D., Ţălu Ş., Částková K., Škarvada P., Macků R., Ščasnovič E., Kaštyl J. Comprehensive Characterization of PVDF Nanofibers at Macro- and Nanolevel. Polymers. 2022;14:593. doi: 10.3390/polym14030593. PubMed DOI PMC
He Z., Rault F., Lewandowski M., Mohsenzadeh E., Salaun F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers. 2021;13:174. doi: 10.3390/polym13020174. PubMed DOI PMC
Correia D., Ribeiro C., Sencadas V., Botelho G., Carabineiro S., Ribelles J.G., Lanceros-Mendez S. Influence of oxygen plasma treatment parameters on poly(vinylidene fluoride) electrospun fiber mats wettability. Prog. Org. Coat. 2015;85:151–158. doi: 10.1016/j.porgcoat.2015.03.019. DOI
Dvořákova J., Wiesnerova L., Chocholata P., Kulda V., Landsmann L., Cedikova M., Kripnerova M., Eberlova L., Babuska V. Human cells with osteogenic potential in bone tissue research. Biomed. Eng. Online. 2023;22:33. doi: 10.1186/s12938-023-01096-w. PubMed DOI PMC
American Type Culture Collection HTB-85 (CRL-4000™) [(accessed on 25 June 2024)]. Available online: https://www.atcc.org/products/htb-85.
Hernandez-Tapia L.G., Fohlerova Z., Zidek J., Alvarez–Perez M.A., Celko L., Kaiser J., Montufar E.B. Effects of Cryopreservation on Cell Metabolic Activity and Function of Biofabricated Structures Laden with Osteoblasts. Materials. 2020;13:1966. doi: 10.3390/ma13081966. PubMed DOI PMC
Thermo Fisher Scientific Inc. Fluorescein (FITC) [(accessed on 25 June 2024)]. Available online: https://www.thermofisher.com/cz/en/home/life-science/cell-analysis/fluorophores/fluorescein.html.
Thermo Fisher Scientific Inc. DAPI (4,6-Diamidino-2-phenylindole) [(accessed on 25 June 2024)]. Available online: https://www.thermofisher.com/cz/en/home/life-science/cell-analysis/fluorophores/dapi-stain.html.
Medeiros E.S., Mattoso L.H., Ito E.N., Gregorski K.S., Robertson G.H., Offeman R.D., Wood D.F., Orts W.J., Imam S.H. Electrospun Nanofibers of Poly(vinyl alcohol) Reinforced with Cellulose Nanofibrils. J. Biobased Mater. Bioenergy. 2008;2:231–242. doi: 10.1166/jbmb.2008.411. DOI
Medeiros G.B., Lima F.d.A., de Almeida D.S., Guerra V.G., Aguiar M.L. Modification and Functionalization of Fibers Formed by Electrospinning: A Review. Membranes. 2022;12:861. doi: 10.3390/membranes12090861. PubMed DOI PMC
Law K.Y. Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. J. Phys. Chem. Lett. 2014;5:686–688. doi: 10.1021/jz402762h. PubMed DOI
Sharma P., Ponte F., Lima M.J., Figueiredo N.M., Ferreira J., Carvalho S. Plasma etching of polycarbonate surfaces for improved adhesion of Cr coatings. Appl. Surf. Sci. 2023;637:157903. doi: 10.1016/j.apsusc.2023.157903. DOI
Kormunda M., Ryšánek P., Hájková P., Štěpanovská E., Čapková P., Pavlík J. Effect of low energy plasma treatment on surface chemistry and phase composition of electrospun polyvinylidene fluoride membrane. Surfaces Interfaces. 2021;22:100900. doi: 10.1016/j.surfin.2020.100900. DOI
Lee J.E., Guo Y., Lee R.E., Leung S.N. Fabrication of electroactive poly(vinylidene fluoride) through non-isothermal crystallization and supercritical CO2 processing. RSC Adv. 2017;7:48712–48722. doi: 10.1039/C7RA09162A. DOI
Medeiros K., Rangel E., Sant’Anna A., Louzada D., Barbosa C., d’Almeida J.R. Evaluation of the electromechanical behavior of polyvinylidene fluoride used as a component of risers in the offshore oil industry. Oil Gas Sci. Technol. 2018;73:48. doi: 10.2516/ogst/2018058. DOI
Cai X., Lei T., Sun D., Lin L. A critical analysis of the α, β a γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv. 2017;7:15382–15389. doi: 10.1039/C7RA01267E. DOI
Zaszczyńska A., Gradys A., Ziemiecka A., Szewczyk P.K., Tymkiewicz R., Lewandowska-Szumieł M., Stachewicz U., Sajkiewicz P. Enhanced Electroactive Phases of Poly(vinylidene Fluoride) Fibers for Tissue Engineering Applications. Int. J. Mol. Sci. 2024;25:4980. doi: 10.3390/ijms25094980. PubMed DOI PMC
Li L., Zhang M., Rong M., Ruan W. Studies on the transformation process of PVDF from α to β phase by stretching. RSC Adv. 2013;4:3938–3943. doi: 10.1039/C3RA45134H. DOI
Lanceros-Méndez S., Mano J.F., Costa A.M., Schmidt V.H. FTIR and DSC studies of mechanically deformed β-PVDF films. J. Macromol. Sci. Part B. 2001;40 B:517–527. doi: 10.1081/MB-100106174. DOI
Ruan L., Yao X., Chang Y., Zhou L., Qin G., Zhang X. Properties and Applications of the β Phase PVDF. Polymers. 2018;10:228. doi: 10.3390/polym10030228. PubMed DOI PMC
Krupa A., Sobczyk A.T., Jaworek A. Fibres & Textiles in Eastern Europe. Volume 22. Research Network Lukasiewicz—Lodz Institute of Technology; Łódź, Poland: 2014. Surface Properties of Plasma-Modified Poly(vinylidene fluoride) and Poly(vinyl chloride) Nanofibres; pp. 35–39.
Jiménez-Robles R., Izquierdo M., Martínez-Soria V., Martí L., Monleón A., Badia J.D. Stability of Superhydrophobicity and Structure of PVDF Membranes Treated by Vacuum Oxygen Plasma and Organofluorosilanisation. Membranes. 2023;13:314. doi: 10.3390/membranes13030314. PubMed DOI PMC
Correia D.M., Nunes-Pereira J., Alikin D., Kholkin A.L., Carabineiro S.A., Rebouta L., Rodrigues M.S., Vaz F., Costa C.M., Lanceros-Méndez S. Surface wettability modification of poly(vinylidene fluoride) and copolymer films and membranes by plasma treatment. Polymer. 2019;169:138–147. doi: 10.1016/j.polymer.2019.02.042. DOI
Szewczyk P.K., Metwally S., Karbowniczek J.E., Marzec M.M., Stodolak-Zych E., Gruszczyński A., Bernasik A., Stachewicz U. Surface-Potential-Controlled Cell Proliferation and Collagen Mineralization on Electrospun Polyvinylidene Fluoride (PVDF) Fiber Scaffolds for Bone Regeneration. ACS Biomater. Sci. Eng. 2019;5:582–593. doi: 10.1021/acsbiomaterials.8b01108. PubMed DOI
Bachir A.I., Horwitz A.R., Nelson W.J., Bianchini J.M. Actin-Based Adhesion Modules Mediate Cell Interactions with the Extracellular Matrix and Neighboring Cells. Cold Spring Harb. Perspect. Biol. 2017;9:a023234. doi: 10.1101/cshperspect.a023234. PubMed DOI PMC