Resting Body Temperature and Long-Term Survival in Older Adults at a Mental Health Center: Cross-Sectional and Longitudinal Data
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
39941385
PubMed Central
PMC11818676
DOI
10.3390/jcm14030713
PII: jcm14030713
Knihovny.cz E-resources
- Keywords
- biomarkers, body temperature, health outcomes, longevity, survival, thermoregulation,
- Publication type
- Journal Article MeSH
Background/Objectives: Elevated body temperature is a well-established biomarker of infection, increased disease risk, and adverse health outcomes. However, the relationship between resting body temperature and long-term survival in older individuals is complex. Emerging evidence suggests that higher basal body temperature is associated with reduced survival and accelerated aging in non-obese older adults. This study aimed to compare body temperatures across different age groups in hospitalized older adults. Methods: Data were retrospectively collected from 367 physically healthy residents of a mental health center. Longitudinal data from 142 individuals (68 men and 74 women), aged 45 to 70 years and monitored continuously over 25 years, were compared with cross-sectional data from 225 individuals (113 men and 112 women) who underwent periodic clinical examinations with temperature measurements. The cross-sectional sample was stratified into four survival categories. Resting oral temperatures were measured under clinical conditions to ensure protocol consistency. Age-related changes in both sexes were evaluated using standard regression analysis, Student's t-tests, ANOVA, and Generalized Linear Models. Results: Longitudinal analysis revealed an increase in body temperature with age among women, while cross-sectional analysis showed that long-lived residents generally had lower body temperatures compared to their shorter-lived counterparts. Conclusions: These findings support the hypothesis that lower lifetime steady-state body temperature is associated with greater longevity in physically healthy older adults. However, further research is needed to determine whether the lower body temperature observed in long-lived individuals is linked to specific health advantages, such as enhanced immune function, absence of detrimental factors or diseases, or a reduced metabolic rate potentially influenced by caloric restriction.
See more in PubMed
Cesari M., Kritchevsky S.B., Newman A.B., Simonsick E.M., Harris T.B., Penninx B.W., Brach J.S., Tylavsky F.A., Satterfield S., Bauer D.C., et al. Added value of physical performance measures in predicting adverse health-related events: Results from the Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2009;57:251–259. doi: 10.1111/j.1532-5415.2008.02126.x. PubMed DOI PMC
Arai Y., Martin-Ruiz C.M., Takayama M., Abe Y., Takebayashi T., Koyasu S., Suematsu M., Hirose N., von Zglinicki T. Inflammation, but not telomere length, predicts successful ageing at extreme old age: A longitudinal study of semi-supercentenarians. EBioMedicine. 2015;2:1549–1558. doi: 10.1016/j.ebiom.2015.07.029. PubMed DOI PMC
Ferrucci L., Levine M.E., Kuo P.L., Simonsick E.M. Time and the Metrics of Aging. Circ. Res. 2018;123:740–744. doi: 10.1161/CIRCRESAHA.118.312816. PubMed DOI PMC
Lee H.J., Alirzayeva H., Koyuncu S., Rueber A., Noormohammadi A., Vilchez D. Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. Nat. Aging. 2023;3:546–566. doi: 10.1038/s43587-023-00383-4. PubMed DOI PMC
Geneva I.I., Cuzzo B., Fazili T., Javaid W. Normal body temperature: A systematic review. Open Forum Infect. Dis. 2019;6:ofz032. doi: 10.1093/ofid/ofz032. PubMed DOI PMC
Waalen J., Buxbaum J.N. Is older colder or colder older? The association of age with body temperature in 18,630 individuals. J. Gerontol. A Boil. Sci. Med. Sci. 2011;66:487–492. doi: 10.1093/gerona/glr001. PubMed DOI PMC
Simonsick E.M., Meier H.C.S., Shaffer N.C., Studenski S.A., Ferrucci L. Basal body temperature as a biomarker of healthy aging. Age. 2016;38:445–454. doi: 10.1007/s11357-016-9952-8. PubMed DOI PMC
Carrillo A.E., Flouris A.D. Caloric restriction and longevity: Effects of reduced body temperature. Ageing Res. Rev. 2011;10:153–162. doi: 10.1016/j.arr.2010.10.001. PubMed DOI
Soare A., Cangemi R., Omodei D., Holloszy J.O., Fontana L. Long-term calorie restriction, but not endurance exercise, lowers core body temperature in humans. Aging. 2011;3:374–379. doi: 10.18632/aging.100280. PubMed DOI PMC
Keil G., Cummings E., de Magalhães J.P. Being cool: How body temperature influences ageing and longevity. Biogerontology. 2015;16:383–397. doi: 10.1007/s10522-015-9571-2. PubMed DOI PMC
Dijk D.J., Duffy J.F., Riel E., Shanahan T.L., Czeisler C.A. Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J. Physiol. 1999;516:611–627. doi: 10.1111/j.1469-7793.1999.0611v.x. PubMed DOI PMC
Obermeyer Z., Samra J.K., Mullainathan S. Individual differences in normal body temperature: Longitudinal big data analysis of patient records. BMJ. 2017;359:j5468. doi: 10.1136/bmj.j5468. PubMed DOI PMC
Bindu B., Bindra A., Rath G. Temperature management under general anesthesia: Compulsion or option. J. Anaesthesiol. Clin. Pharmacol. 2017;33:306–316. PubMed PMC
Evans S.S., Repasky E.A., Fisher D.T. Fever and the thermal regulation of immunity: The immune system feels the heat. Nat. Rev. Immunol. 2015;15:335–349. doi: 10.1038/nri3843. PubMed DOI PMC
Dinarello C.A. Infection, fever, and exogenous and endogenous pyrogens: Some concepts have changed. J. Endotoxin Res. 2004;10:201–222. PubMed
Ogoina D. Fever, fever patterns and diseases called ‘fever’—A review. J. Infect. Public Health. 2011;4:108–124. doi: 10.1016/j.jiph.2011.05.002. PubMed DOI
Gomolin I.H., Aung M.M., Wolf-Klein G., Auerbach C. Older is colder: Temperature range and variation in older people. J. Am. Geriatr. Soc. 2005;53:2170–2172. doi: 10.1111/j.1532-5415.2005.00500.x. PubMed DOI
Güneş U.Y., Zaybak A. Does the body temperature change in older people? J. Clin. Nurs. 2008;17:2284–2287. doi: 10.1111/j.1365-2702.2007.02272.x. PubMed DOI
Falk B., Bar-Or O., Smolander J., Frost O. Response to rest and exercise in the cold: Effects of age and aerobic fitness. J. Appl. Physiol. 1994;76:72–78. doi: 10.1152/jappl.1994.76.1.72. PubMed DOI
Thompson C.S., Kenney W.L. Altered neurotransmitter control of reflex vasoconstriction in aged human skin. J. Physiol. 2004;558:697–704. doi: 10.1113/jphysiol.2004.065714. PubMed DOI PMC
Franceschi C., Garagnani P., Parini P., Giuliani C., Santoro A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018;14:576–590. doi: 10.1038/s41574-018-0059-4. PubMed DOI
López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186:243–278. doi: 10.1016/j.cell.2022.11.001. PubMed DOI
de Luca C., Olefsky J.M. Inflammation and insulin resistance. FEBS Lett. 2008;582:97–105. doi: 10.1016/j.febslet.2007.11.057. PubMed DOI PMC
Fairweather D., Rose N.R. Women and autoimmune diseases. Emerg. Infect. Dis. 2004;10:2005–2011. doi: 10.3201/eid1011.040367. PubMed DOI PMC
Dolgin E. Why autoimmune disease is more common in women: X chromosome holds clues. Nature. 2024;626:466. doi: 10.1038/d41586-024-00267-6. PubMed DOI
Chmielewski P., Borysławski K., Chmielowiec K., Chmielowiec J. Longitudinal and cross-sectional changes with age in selected anthropometric and physiological traits in hospitalized adults: An insight from the Polish Longitudinal Study of Aging (PLSA) Anthr. Rev. 2015;78:317–336. doi: 10.1515/anre-2015-0025. DOI
Chmielewski P.P., Borysławski K., Chmielowiec K., Chmielowiec J., Strzelec B. The association between total leukocyte count and longevity: Evidence from longitudinal and cross-sectional data. Ann. Anat. 2016;204:1–10. doi: 10.1016/j.aanat.2015.09.002. PubMed DOI
Bhaskaran K., Dos-Santos-Silva I., Leon D.A., Douglas I.J., Smeeth L. Association of BMI with overall and cause-specific mortality: A population-based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol. 2018;6:944–953. doi: 10.1016/S2213-8587(18)30288-2. PubMed DOI PMC
Horsburgh C.R., Jr., Rubin E.J. Clinical practice. Latent tuberculosis infection in the United States. N. Engl. J. Med. 2011;364:1441–1448. doi: 10.1056/NEJMcp1005750. PubMed DOI
Tian X., Chen J., Wang X., Xiet Y., Zhalng X., Han D., Fu H., Yin W., Wu N. Global, regional, and national HIV/AIDS disease burden levels and trends in 1990-2019: A systematic analysis for the global burden of disease 2019 study. Front. Public Health. 2023;11:1068664. doi: 10.3389/fpubh.2023.1068664. PubMed DOI PMC
El-Serag H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142:1264–1273. doi: 10.1053/j.gastro.2011.12.061. PubMed DOI PMC
Conti B. Considerations on temperature, longevity and aging. Cell. Mol. Life Sci. 2008;65:1626–1630. doi: 10.1007/s00018-008-7536-1. PubMed DOI PMC
Lee I.M., Shiroma E.J., Lobelo F., Puska P., Blair S.N., Katzmarzyk P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet. 2012;380:219–229. doi: 10.1016/S0140-6736(12)61031-9. PubMed DOI PMC
Cappuccio F.P., Cooper D., D’Elia L., Strazzullo P., Miller M.A. Sleep duration predicts cardiovascular outcomes: A systematic review and meta-analysis of prospective studies. Eur. Heart J. 2011;32:1484–1492. doi: 10.1093/eurheartj/ehr007. PubMed DOI
Speakman J.R., Mitchell S.E. Caloric restriction. Mol. Asp. Med. 2011;32:159–221. doi: 10.1016/j.mam.2011.07.001. PubMed DOI
Whitlock G., Lewington S., Sherliker P., Clarke R., Emberson J., Halsey J., Qizilbash N., Collins R., Peto R. Body-mass index and cause-specific mortality in 900,000 adults: Collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–1096. PubMed PMC
Åström D.O., Forsberg B., Rocklöv J. Heat wave impact on morbidity and mortality in the elderly population: A review of recent studies. Maturitas. 2011;69:99–105. doi: 10.1016/j.maturitas.2011.03.008. PubMed DOI
Kowald A., Palmer D., Secci R., Fuellen G. Healthy aging in times of extreme temperatures: Biomedical approaches. Aging Dis. 2024;15:601–611. doi: 10.14336/AD.2023.0619. PubMed DOI PMC
Landrigan P.J., Fuller R., Acosta N.J.R., Adeyi O., Arnold R., Basu N.N., Baldé A.B., Bertollini R., Bose-O’Reilly S., Boufford J.I., et al. The Lancet Commission on pollution and health. Lancet. 2018;391:462–512. doi: 10.1016/S0140-6736(17)32345-0. PubMed DOI
Dixit V.D., Schaffer E.M., Pyle R.S., Collins G.D., Sakthivel S.K., Palaniappan R., Lillard J.W., Taub D.D. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J. Clin. Investig. 2004;114:57–66. doi: 10.1172/JCI200421134. PubMed DOI PMC
Higami Y., Pugh T.D., Page G.D., Allison D.B., Prolla T.A., Weindruch R. Adipose tissue energy metabolism: Altered gene expression profile of mice subjected to long-term caloric restriction. FASEB J. 2004;18:415–417. doi: 10.1096/fj.03-0678fje. PubMed DOI
Higami Y., Barger J.L., Page G.P., Allison D.B., Smith S.R., Prolla T.A., Weindruch R. Energy restriction lowers the expression of genes linked to inflammation, the cytoskeleton, the extracellular matrix, and angiogenesis in mouse adipose tissue. J. Nutr. 2006;136:343–352. doi: 10.1093/jn/136.2.343. PubMed DOI
Fontana L., Klein S., Holloszy J.O., Premachandra B.N. Effect of long-term calorie restriction with adequate protein and micronutrients on thyroid hormones. J. Clin. Endocrinol. Metab. 2006;91:3232–3235. doi: 10.1210/jc.2006-0328. PubMed DOI
Cangemi R., Friedmann A.J., Holloszy J.O., Fontana L. Long-term effects of calorie restriction on serum sex-hormone concentrations in men. Aging Cell. 2010;9:236–242. doi: 10.1111/j.1474-9726.2010.00553.x. PubMed DOI PMC
Roth G.S., Lane M.A., Ingram D.K., Mattison J.A., Elahi D., Tobin J.D. Biomarkers of caloric restriction may predict longevity in humans. Science. 2002;297:811. doi: 10.1126/science.1071851. PubMed DOI
Demetrius L. Caloric restriction, metabolic rate, and entropy. J. Gerontol. A Biol. Sci. Med. Sci. 2004;59:B902–B915. doi: 10.1093/gerona/59.9.B902. PubMed DOI
Chmielewski P. Rethinking modern theories of ageing and their classification: The proximate mechanisms and the ultimate explanations. Anthropol. Rev. 2017;80:259–272. doi: 10.1515/anre-2017-0021. DOI
Finkel T., Holbrook N.J. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–247. doi: 10.1038/35041687. PubMed DOI
Busuttil R.A., Rubio M., Dollé M.E., Campisi J., Vijg J. Oxygen accelerates the accumulation of mutations during the senescence and immortalization of murine cells in culture. Aging Cell. 2003;2:287–294. doi: 10.1046/j.1474-9728.2003.00066.x. PubMed DOI
Passos J.F., von Zglinicki T. Oxygen free radicals in cell senescence: Are they signal transducers? Free Radic. Res. 2006;40:1277–1283. doi: 10.1080/10715760600917151. PubMed DOI
Lu T., Finkel T. Free radicals and senescence. Exp. Cell Res. 2008;314:1918–1922. doi: 10.1016/j.yexcr.2008.01.011. PubMed DOI PMC
Santos A.L., Sinha S., Lindner A.B. The good, the bad, and the ugly of ROS: New insights on aging and aging-related diseases from eukaryotic and prokaryotic model organisms. Oxid. Med. Cell. Longev. 2018;2018:1941285. doi: 10.1155/2018/1941285. PubMed DOI PMC
Clement M.V., Luo L. Organismal aging and oxidants beyond macromolecules damage. Proteomics. 2020;20:e1800400. doi: 10.1002/pmic.201800400. PubMed DOI
Juan C.A., Pérez de la Lastra J.M., Plou F.J., Pérez-Lebeña E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 2021;22:4642. doi: 10.3390/ijms22094642. PubMed DOI PMC
Shields H.J., Traa A., van Raamsdonk J.M. Beneficial and detrimental effects of reactive oxygen species on lifespan: A comprehensive review of comparative and experimental studies. Front. Cell Dev. Biol. 2021;9:628157. doi: 10.3389/fcell.2021.628157. PubMed DOI PMC
Speakman J.R., Król E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 2010;79:726–746. doi: 10.1111/j.1365-2656.2010.01689.x. PubMed DOI
Aubert G., Lansdorp P.M. Telomeres and aging. Physiol. Rev. 2008;88:557–579. doi: 10.1152/physrev.00026.2007. PubMed DOI
López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi: 10.1016/j.cell.2013.05.039. PubMed DOI PMC
Borghesan M., Hoogaars W.M.H., Varela-Eirin M., Talma N., Demaria M. A senescence-centric view of aging: Implications for longevity and disease. Trends Cell Biol. 2020;30:777–791. doi: 10.1016/j.tcb.2020.07.002. PubMed DOI
Mattson M.P. Hormesis defined. Ageing Res. Rev. 2008;7:1–7. doi: 10.1016/j.arr.2007.08.007. PubMed DOI PMC
Radak Z., Chung H.Y., Goto S. Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic. Biol. Med. 2008;44:153–159. doi: 10.1016/j.freeradbiomed.2007.01.029. PubMed DOI
Maeda M., Mimori K., Suzuki S., Horiuchi T., Makino N. Preventive and promotive effects of habitual hot spa-bathing on the elderly in Japan. Sci. Rep. 2018;8:33. doi: 10.1038/s41598-017-18488-3. PubMed DOI PMC
Takeda M., Nakamura H., Otsu H., Mimori K., Maeda T., Managi S. Hot spring bathing practices have a positive effect on mental health in Japan. Heliyon. 2023;9:e19631. doi: 10.1016/j.heliyon.2023.e19631. PubMed DOI PMC
Westerterp-Plantenga M.S., van Marken Lichtenbelt W.D., Strobbe H., Schrauwen P. Energy metabolism in humans at a lowered ambient temperature. Eur. J. Clin. Nutr. 2002;56:288–296. doi: 10.1038/sj.ejcn.1601308. PubMed DOI
Cannon B., Nedergaard J. Nonshivering thermogenesis and its adequate measurement in metabolic studies. J. Exp. Biol. 2011;214:242–253. doi: 10.1242/jeb.050989. PubMed DOI
Jura M., Kozak L.P. Obesity and related consequences to ageing. Age. 2016;38:23. doi: 10.1007/s11357-016-9884-3. PubMed DOI PMC
De Lorenzo A., Martinoli R., Vaia F., Di Renzo L. Normal weight obese (NWO) women: An evaluation of a candidate new syndrome. Nutr. Metab. Cardiovasc. Dis. 2006;16:513–523. doi: 10.1016/j.numecd.2005.10.010. PubMed DOI
Clegg A., Young J., Iliffe S., Rikkert M.O., Rockwood K. Frailty in elderly people. Lancet. 2013;381:752–762. doi: 10.1016/S0140-6736(12)62167-9. PubMed DOI PMC
Fried L.P., Xue Q.L., Cappola A.R., Ferrucci L., Chaves P., Varadhan R., Guralnik J.M., Leng S.X., Semba R.D., Walston J.D., et al. Nonlinear multisystem physiological dysregulation associated with frailty in older women: Implications for etiology and treatment. J. Gerontol. A Biol. Sci. Med. Sci. 2009;64:1049–1057. doi: 10.1093/gerona/glp076. PubMed DOI PMC
Ruggiero C., Metter E.J., Melenovsky V., Cherubini A., Najjar S.S., Ble A., Senin U., Longo D.L., Ferrucci L. High basal metabolic rate is a risk factor for mortality: The Baltimore Longitudinal Study of Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2008;63:698–706. doi: 10.1093/gerona/63.7.698. PubMed DOI PMC
Franceschi C., Garagnani P., Vitale G., Capri M., Salvioli S. Inflammaging and ‘garb-aging’. Trends Endocrinol. Metab. 2017;28:199–212. doi: 10.1016/j.tem.2016.09.005. PubMed DOI
Taneja S., Mitnitski A.B., Rockwood K., Rutenberg A.D. Dynamical network model for age-related health deficits and mortality. Phys. Rev. E. 2016;93:022309. doi: 10.1103/PhysRevE.93.022309. PubMed DOI
Mitnitski A.B., Rutenberg A.D., Farrell S., Rockwood K. Aging, frailty and complex networks. Biogerontology. 2017;18:433–446. doi: 10.1007/s10522-017-9684-x. PubMed DOI
Rutenberg A.D., Mitnitski A.B., Farrell S.G., Rockwood K. Unifying aging and frailty through complex dynamical networks. Exp. Gerontol. 2018;107:126–129. doi: 10.1016/j.exger.2017.08.027. PubMed DOI
Howlett S.E., Rutenberg A.D., Rockwood K. The degree of frailty as a translational measure of health in aging. Nat. Aging. 2021;1:651–665. doi: 10.1038/s43587-021-00099-3. PubMed DOI