Changes in Small Airway Physiology Measured by Impulse Oscillometry in Subjects with Allergic Asthma Following Methacholine and Inhaled Allergen Challenge
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Foresee Pharmaceuticals
PubMed
39941577
PubMed Central
PMC11818261
DOI
10.3390/jcm14030906
PII: jcm14030906
Knihovny.cz E-zdroje
- Klíčová slova
- allergen bronchoprovocation test, asthma, impulse oscillometry, lung function, methacholine challenge, small airways,
- Publikační typ
- časopisecké články MeSH
Background: Small airway dysfunction (SAD) is associated with impaired asthma control, but small airway physiology is not routinely assessed in clinical practice. Previously, we demonstrated impulse oscillometry (IOS)-defined small airway dysfunction (SAD) in dual responders (DRs) upon bronchoprovocation with various allergens. Aim: To compare lung physiology using spirometry and IOS following bronchoprovocation with methacholine (M) and inhaled house dust mite (HDM) extract in corticosteroid-naïve asthmatic subjects. Methods: Non-smoking, clinically stable HDM-allergic asthmatic subjects (18-55 years, FEV1 > 70% of pred.) underwent an M and inhaled HDM challenge on two separate days. Airway response was measured by IOS and spirometry, until a drop in FEV1 ≥ 20% (PC20) from post-diluent baseline (M), and up to 8 h post-allergen (HDM). Early (EAR) and late asthmatic response (LAR) to HDM were defined as ≥20% and ≥15% fall in FEV1 from post-diluent baseline during 0-3 h and 3-8 h post-challenge, respectively. IOS parameters (Rrs5, Rrs20, Rrs5-20, Xrs5, AX, Fres) were compared between mono-responders (MRs: EAR only) and dual responders (EAR + LAR). Correlations between maximal % change from baseline after the two airway challenges were calculated for both FEV1 and IOS parameters. Results: A total of 47 subjects were included (11 MRs; 36 DRs). FEV1 % predicted did not differ between MR and DR at baseline, but DR had lower median PC20M (0.84 (range 0.07-7.51) vs. MR (2.15 (0.53-11.29)); p = 0.036). During the LAR, DRs had higher IOS values than MRs. For IOS parameters (but not for FEV1), the maximal % change from baseline following M and HDM challenge were correlated. PC20M was inversely correlated with the % change in FEV1 and the % change in Xrs5 during the LAR (r= -0.443; p = 0.0018 and r= -0.389; p = 0.0075, respectively). Conclusions: During HDM-induced LAR, changes in small airway physiology can be non-invasively detected with IOS and are associated with increased airway hyperresponsiveness and changes in small airway physiology during methacholine challenge. DRs have a small airways phenotype, which reflects a more advanced airway disease.
Lung Function Centre O2CO2 2582 EZ The Hague The Netherlands
QPS NL 9713 AG Groningen The Netherlands
School of Medicine University of Dundee Dundee DD1 9SY UK
University Clinic Primary Care Skåne 29189 Kristianstad Region Skåne Sweden
Zobrazit více v PubMed
Usmani O.S., Barnes P.J. Assessing and treating small airways disease in asthma and chronic obstructive pulmonary disease. Ann. Med. 2012;44:146–156. doi: 10.3109/07853890.2011.585656. PubMed DOI
van der Wiel E., ten Hacken N.H., Postma D.S., van den Berge M. Small-airways dysfunction associates with respiratory symptoms and clinical features of asthma: A systematic review. J. Allergy Clin. Immunol. 2013;131:646–657. doi: 10.1016/j.jaci.2012.12.1567. PubMed DOI
Bergeron C., Hauber H.P., Gotfried M., Newman K., Dhanda R., Servi R.J., Ludwig M.S., Hamid Q. Evidence of remodeling in peripheral airways of patients with mild to moderate asthma: Effect of hydrofluoroalkane-flunisolide. J. Allergy Clin. Immunol. 2005;116:983–989. doi: 10.1016/j.jaci.2005.07.029. PubMed DOI
Dolhnikoff M., da Silva L.F., de Araujo B.B., Gomes H.A., Fernezlian S., Mulder A., Lindeman J.H., Mauad T. The outer wall of small airways is a major site of remodeling in fatal asthma. J. Allergy Clin. Immunol. 2009;123:1090–1097.e1. doi: 10.1016/j.jaci.2009.02.032. PubMed DOI
Chan R., Duraikannu C., Thouseef M.J., Lipworth B. Impaired Respiratory System Resistance and Reactance Are Associated with Bronchial Wall Thickening in Persistent Asthma. J. Allergy Clin. Immunol. Pract. 2023;11:1459–1462.e3. doi: 10.1016/j.jaip.2022.12.040. PubMed DOI
Postma D.S., Brightling C., Fabbri L., van der Molen T., Nicolini G., Papi A., Rabe K.F., Siddiqui S., Singh D., Berge M.v.D., et al. Unmet needs for the assessment of small airways dysfunction in asthma: Introduction to the ATLANTIS study. Eur. Respir. J. 2015;45:1534–1538. doi: 10.1183/09031936.00214314. PubMed DOI
Ducharme F.M., Chan R. Oscillometry in the diagnosis, assessment, and monitoring of asthma in children and adults: Review article. Ann. Allergy Asthma Immunol. 2024. ahead of print . PubMed DOI
Cockcroft D.W. Direct challenge tests: Airway hyperresponsiveness in asthma: Its measurement and clinical significance. Chest. 2010;138((Suppl. S2)):18s–24s. doi: 10.1378/chest.10-0088. PubMed DOI
James A., Ryan G. Testing airway responsiveness using inhaled methacholine or histamine. Respirology. 1997;2:97–105. doi: 10.1111/j.1440-1843.1997.tb00061.x. PubMed DOI
Yoon J.W., Shin Y.H., Jee H.M., Chang S.J., Baek J.H., Choi S.H., Kim H.Y., Han M.Y. Useful marker of oscillatory lung function in methacholine challenge test-comparison of reactance and resistance with dose-response slope. Pediatr. Pulmonol. 2014;49:521–528. doi: 10.1002/ppul.22866. PubMed DOI
Schulze J., Smith H.-J., Fuchs J., Herrmann E., Dressler M., Rose M.A., Zielen S. Methacholine challenge in young children as evaluated by spirometry and impulse oscillometry. Respir. Med. 2012;106:627–634. doi: 10.1016/j.rmed.2012.01.007. PubMed DOI
Choi S.H., Sheen Y.H., Kim M.A., Baek J.H., Baek H.S., Lee S.J., Yoon J.W., Rha Y.H., Han M.Y. Clinical Implications of Oscillatory Lung Function during Methacholine Bronchoprovocation Testing of Preschool Children. BioMed Res. Int. 2017;2017:9460190. doi: 10.1155/2017/9460190. PubMed DOI PMC
Diamant Z., Gauvreau G.M., Cockcroft D.W., Boulet L.P., Sterk P.J., de Jongh F.H., Dahlén B., O’Byrne P.M. Inhaled allergen bronchoprovocation tests. J. Allergy Clin. Immunol. 2013;132:1045–1055.e6. doi: 10.1016/j.jaci.2013.08.023. PubMed DOI
Gauvreau G.M., Davis B.E., Scadding G., Boulet L.-P., Bjermer L., Chaker A., Cockcroft D.W., Dahlén B., Fokkens W., Hellings P., et al. Allergen provocation tests in respiratory research: Building on 50 years of experience. Eur. Respir. J. 2022;60:2102782. doi: 10.1183/13993003.02782-2021. PubMed DOI PMC
O’Byrne P.M., Dolovich J., Hargreave F.E. Late asthmatic responses. Am. Rev. Respir. Dis. 1987;136:740–751. doi: 10.1164/ajrccm/136.3.740. PubMed DOI
Zhu Y., Esnault S., Ge Y., Jarjour N.N., Brasier A.R. Airway fibrin formation cascade in allergic asthma exacerbation: Implications for inflammation and remodeling. Clin. Proteom. 2022;19:15. doi: 10.1186/s12014-022-09351-3. PubMed DOI PMC
Metzger W.J., Nugent K., Richerson H.B. Site of airflow obstruction during early and late phase asthmatic responses to allergen bronchoprovocation. Chest. 1985;88:369–375. doi: 10.1378/chest.88.3.369. PubMed DOI
Stenberg H., Diamant Z., Ankerst J., Bjermer L., Tufvesson E. Small airway involvement in the late allergic response in asthma. Clin. Exp. Allergy. 2017;47:1555–1565. doi: 10.1111/cea.13036. PubMed DOI
Boulet L.P., Cote A., Abd-Elaziz K., Gauvreau G., Diamant Z. Allergen bronchoprovocation test: An important research tool supporting precision medicine. Curr. Opin. Pulm. Med. 2021;27:15–22. doi: 10.1097/MCP.0000000000000742. PubMed DOI
Contoli M., Santus P., Papi A. Small airway disease in asthma: Pathophysiological and diagnostic considerations. Curr. Opin. Pulm. Med. 2015;21:68–73. doi: 10.1097/MCP.0000000000000122. PubMed DOI
Donohue P.A., Kaminsky D.A. The role of oscillometry in asthma. Curr. Opin. Pulm. Med. 2024;30:268–275. doi: 10.1097/MCP.0000000000001057. PubMed DOI
Kleinhendler E., Rosman M., Fireman E., Freund O., Gershman I., Pumin I., Perluk T., Tiran B., Unterman A., Bar-Shai A. Impulse Oscillometry as an Alternative Lung Function Test for Hospitalized Adults. Respir. Care. 2024;69:415–421. doi: 10.4187/respcare.10963. PubMed DOI PMC
Global Initiative for Asthma Global Strategy for Asthma Management and Prevention. 2018. [(accessed on 12 January 2024)]. Available online: www.ginasthma.org.
Miller M.R., Hankinson J.A.T.S., Brusasco V., Burgos F., Casaburi R., Coates A., Crapo R., Enright P., Van Der Grinten C.P.M., Gustafsson P. Standardisation of spirometry. Eur. Respir. J. 2005;26:319–338. doi: 10.1183/09031936.05.00034805. PubMed DOI
Oostveen E., MacLeod D., Lorino H., Farré R., Hantos Z., Desager K., Marchal F., ERS Task Force on Respiratory Impedance Measurements The forced oscillation technique in clinical practice: Methodology, recommendations and future developments. Eur. Respir. J. 2003;22:1026–1041. doi: 10.1183/09031936.03.00089403. PubMed DOI
Chan R., Lipworth B. Identifying poorer asthma control using oscillometry ratios. J. Allergy Clin. Immunol. Pract. 2024;12:506–508.e1. doi: 10.1016/j.jaip.2023.10.048. PubMed DOI
Coates A.L., Wanger J., Cockcroft D.W., Culver B.H., Force T.B.T.T., Carlsen K.-H., Diamant Z., Gauvreau G., Hall G.L., Hallstrand T.S., et al. ERS technical standard on bronchial challenge testing: General considerations and performance of methacholine challenge tests. Eur. Respir. J. 2017;49:1601526. doi: 10.1183/13993003.01526-2016. PubMed DOI
Sterk P.J., Fabbri L.M., Quanjer P.H., Cockcroft D.W., O’Byrne P.M., Anderson S.D., Juniper E.F., Malo J.L. Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Eur. Respir. J. 1993;6((Suppl. S16)):53–83. doi: 10.1183/09041950.053s1693. PubMed DOI
Juniper E.F., Frith P.A., Dunnett C., Cockcroft D.W., Hargreave F.E. Reproducibility and comparison of responses to inhaled histamine and methacholine. Thorax. 1978;33:705–710. doi: 10.1136/thx.33.6.705. PubMed DOI PMC
Davis B.E., Cockcroft D.W. Calculation of provocative concentration causing a 20% fall in FEV1: Comparison of lowest vs highest post-challenge FEV1. Chest. 2000;117:881–883. doi: 10.1378/chest.117.3.881. PubMed DOI
Galant S.P., Komarow H.D., Shin H.-W., Siddiqui S., Lipworth B.J. The case for impulse oscillometry in the management of asthma in children and adults. Ann. Allergy Asthma Immunol. 2017;118:664–671. doi: 10.1016/j.anai.2017.04.009. PubMed DOI PMC
Ravensberg A.J., Van Rensen E.L.J., Grootendorst D.C., De Kluijver J., Diamant Z., Ricciardolo F.L.M., Sterk P.J. Validated safety predictions of airway responses to house dust mite in asthma. Clin. Exp. Allergy. 2007;37:100–107. doi: 10.1111/j.1365-2222.2006.02617.x. PubMed DOI
Cockcroft D., Murdock K., Kirby J., Hargreave F. Prediction of airway responsiveness to allergen from skin sensitivity to allergen and airway responsiveness to histamine. Am. Rev. Respir. Dis. 1987;135:264–267. PubMed
Meijer G.G., Postma D.S., Mulder P.G., van Aalderen W.M. Long-term circadian effects of salmeterol in asthmatic children treated with inhaled corticosteroids. Pt 1Am. J. Respir. Crit. Care Med. 1995;152:1887–1892. doi: 10.1164/ajrccm.152.6.8520751. PubMed DOI
Barkas G.I., Daniil Z., Kotsiou O.S. The Role of Small Airway Disease in Pulmonary Fibrotic Diseases. J. Pers. Med. 2023;13:1600. doi: 10.3390/jpm13111600. PubMed DOI PMC
Tota M., Łacwik J., Laska J., Sędek Ł., Gomulka K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells. 2023;12:1326. doi: 10.3390/cells12091326. PubMed DOI PMC
Naji N., Keung E., Kane J., Watson R.M., Killian K.J., Gauvreau G.M. Comparison of changes in lung function measured by plethymography and IOS after bronchoprovocation. Respir. Med. 2013;107:503–510. doi: 10.1016/j.rmed.2012.12.022. PubMed DOI
O’Byrne P.M., Inman M.D. Airway hyperresponsiveness. Chest. 2003;123((Suppl. S3)):411S–416S. doi: 10.1378/chest.123.3_suppl.411S. PubMed DOI
Gauvreau G.M., Watson R.M., O’Byrne P.M. Kinetics of allergen-induced airway eosinophilic cytokine production and airway inflammation. Am. J. Respir. Crit. Care Med. 1999;160:640–647. doi: 10.1164/ajrccm.160.2.9809130. PubMed DOI
Busse W.W. The relationship of airway hyperresponsiveness and airway inflammation: Airway hyperresponsiveness in asthma: Its measurement and clinical significance. Chest. 2010;138((Suppl. S2)):4S–10S. doi: 10.1378/chest.10-0100. PubMed DOI PMC
Kuo C.R., Jabbal S., Lipworth B. Is small airways dysfunction related to asthma control and type 2 inflammation? Ann. Allergy Asthma Immunol. 2018;121:631–632. doi: 10.1016/j.anai.2018.08.009. PubMed DOI
Zuiker R.G., Tribouley C., Diamant Z., Boot J.D., Cohen A.F., Van Dyck K., De Lepeleire I., Rivas V.M., Malkov V.A., Burggraaf J., et al. Sputum RNA signature in allergic asthmatics following allergen bronchoprovocation test. Eur. Clin. Respir. J. 2016;3:31324. doi: 10.3402/ecrj.v3.31324. PubMed DOI PMC
Fahy J.V., Fleming H.E., Wong H.H., Liu J.T., Su J.Q., Reimann J., Fick R.B., Jr., Boushey H.A. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am. J. Respir. Crit. Care Med. 1997;155:1828–1834. doi: 10.1164/ajrccm.155.6.9196082. PubMed DOI
Busse W.W., Melén E., Menzies-Gow A.N. Holy Grail: The journey towards disease modification in asthma. Eur. Respir. Rev. 2022;31:210183. doi: 10.1183/16000617.0183-2021. PubMed DOI PMC
Van Rensen E.L., Evertse C.E., Van Schadewijk W.A., Van Wijngaarden S., Ayre G., Mauad T., Hiemstra P.S., Sterk P.J., Rabe K.F. Eosinophils in bronchial mucosa of asthmatics after allergen challenge: Effect of anti-IgE treatment. Allergy. 2009;64:72–80. doi: 10.1111/j.1398-9995.2008.01881.x. PubMed DOI
Chan R., Kuo C.R., Lipworth B. Real-life small airway outcomes in severe asthma patients receiving biologic therapies. J. Allergy Clin. Immunol. Pract. 2021;9:2907–2909. doi: 10.1016/j.jaip.2021.01.029. PubMed DOI
Qin R., An J., Xie J., Huang R., Xie Y., He L., Xv H., Qian G., Li J. FEF25–75% Is a More Sensitive Measure Reflecting Airway Dysfunction in Patients with Asthma: A Comparison Study Using FEF25–75% and FEV1. J. Allergy Clin. Immunol. Pract. 2021;9:3649–3659.e6. doi: 10.1016/j.jaip.2021.06.027. PubMed DOI
Quanjer P.H., Weiner D.J., Pretto J.J., Brazzale D.J., Boros P.W. Measurement of FEF25–75% and FEF75% does not contribute to clinical decision making. Eur. Respir. J. 2014;43:1051–1058. doi: 10.1183/09031936.00128113. PubMed DOI
Gauvreau G.M., O’Byrne P.M., Boulet L.P., Wang Y., Cockcroft D., Bigler J., FitzGerald J.M., Boedigheimer M., Davis B.E., Dias C., et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N. Engl. J. Med. 2014;370:2102–2110. doi: 10.1056/NEJMoa1402895. PubMed DOI
Diver S., Khalfaoui L., Emson C., Wenzel S.E., Menzies-Gow A., Wechsler M.E., Johnston J., Molfino N., Parnes J.R., Megally A., et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir. Med. 2021;9:1299–1312. doi: 10.1016/S2213-2600(21)00226-5. PubMed DOI
Chan R., Lipworth B.J. Impact of Biologic Therapy on the Small Airways Asthma Phenotype. Lung. 2022;200:691–696. doi: 10.1007/s00408-022-00579-2. PubMed DOI PMC
Diamant Z., van Maaren M., Muraro A., Jesenak M., Striz I. Allergen immunotherapy for allergic asthma: The future seems bright. Respir. Med. 2023;210:107125. doi: 10.1016/j.rmed.2023.107125. PubMed DOI
Van Bever H.P., Stevens W.J. Evolution of the late asthmatic reaction during immunotherapy and after stopping immunotherapy. J. Allergy Clin. Immunol. 1990;86:141–146. doi: 10.1016/S0091-6749(05)80058-2. PubMed DOI
Arvidsson M.B., Löwhagen O., Rak S. Allergen specific immunotherapy attenuates early and late phase reactions in lower airways of birch pollen asthmatic patients: A double blind placebo-controlled study. Allergy. 2004;59:74–80. doi: 10.1046/j.1398-9995.2003.00334.x. PubMed DOI
Castro M., Corren J., Pavord I.D., Maspero J., Wenzel S., Rabe K.F., Busse W.W., Ford L., Sher L., Fitzgerald J.M., et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018;378:2486–2496. doi: 10.1056/NEJMoa1804092. PubMed DOI
Chan R., Stewart K., Kuo C.R., Lipworth B. Evaluation of dupilumab and benralizumab on peripheral airway resistance and reactance. Allergy. 2024;79:2862–2864. doi: 10.1111/all.16214. PubMed DOI
Mead J. The lung’s “quiet zone”. N. Engl. J. Med. 1970;282:1318–1319. doi: 10.1056/NEJM197006042822311. PubMed DOI
Chan R., Misirovs R., Lipworth B. Repeatability of impulse oscillometry in patients with severe asthma. Eur. Respir. J. 2022;59:2101679. doi: 10.1183/13993003.01679-2021. PubMed DOI
Chan R., Gochicoa-Rangel L., Cottini M., Comberiati P., Gaillard E.A., Ducharme F.M., Galant S.P. Ascertainment of small airway dysfunction using oscillometry to better define asthma control and future risk: Are we ready to implement it in clinical practice? Chest. 2024. ahead of print . PubMed DOI
Manson M.L., Säfholm J., James A., Johnsson A.-K., Bergman P., Al-Ameri M., Orre A.-C., Kärrman-Mårdh C., Dahlén S.-E., Adner M. IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J. Allergy Clin. Immunol. 2020;145:808–817.e2. doi: 10.1016/j.jaci.2019.10.037. PubMed DOI
Kidney J.C., Boulet L.-P., Hargreave F.E., Deschesnes F., Swystun V.A., O’Byrne P.M., Choudry N., Morrisa M.M., Jennings B., Andersson N., et al. Evaluation of single-dose inhaled corticosteroid activity with an allergen challenge model. J. Allergy Clin. Immunol. 1997;100:65–70. doi: 10.1016/S0091-6749(97)70196-9. PubMed DOI
Foy B.H., Soares M., Bordas R., Richardson M., Bell A., Singapuri A., Hargadon B., Brightling C., Burrowes K., Kay D., et al. Lung Computational Models and the Role of the Small Airways in Asthma. Am. J. Respir. Crit. Care Med. 2019;200:982–991. doi: 10.1164/rccm.201812-2322OC. PubMed DOI PMC
Kaminsky D.A., Simpson S.J., Berger K.I., Calverley P., de Melo P.L., Dandurand R., Dellacà R.L., Farah C.S., Farré R., Hall G.L., et al. Clinical significance and applications of oscillometry. Eur. Respir. Rev. 2022;31:210208. doi: 10.1183/16000617.0208-2021. PubMed DOI PMC
Cottini M., Lombardi C., Comberiati P., Berti A., Menzella F., Dandurand R.J., Diamant Z., Chan R. Oscillometry-defined small airways dysfunction as a treatable trait in asthma. Ann. Allergy Asthma Immunol. 2024. ahead of print . PubMed DOI
Menzies-Gow A., Colice G., Griffiths J.M., Almqvist G., Ponnarambil S., Kaur P., Ruberto G., Bowen K., Hellqvist Å., Mo M., et al. NAVIGATOR: A phase 3 multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the efficacy and safety of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir. Res. 2020;21:266. doi: 10.1186/s12931-020-01526-6. PubMed DOI PMC
Gibson P.G., Yang I.A., Upham J.W., Reynolds P.N., Hodge S., James A.L., Jenkins C., Peters M.J., Marks G.B., Baraket M., et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): A randomised, double-blind, placebo-controlled trial. Lancet. 2017;390:659–668. doi: 10.1016/S0140-6736(17)31281-3. PubMed DOI