FGF21 protects against HFpEF by improving cardiac mitochondrial bioenergetics in mice
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
81925004
China National Funds for Distinguished Young Scientists
PubMed
39955281
PubMed Central
PMC11829982
DOI
10.1038/s41467-025-56885-9
PII: 10.1038/s41467-025-56885-9
Knihovny.cz E-resources
- MeSH
- Adiponectin metabolism genetics MeSH
- Diet, High-Fat adverse effects MeSH
- Energy Metabolism * MeSH
- Fibroblast Growth Factors * metabolism genetics blood MeSH
- Phosphatidylinositol 3-Kinases metabolism MeSH
- Liver metabolism MeSH
- Myocytes, Cardiac metabolism MeSH
- Humans MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase metabolism genetics MeSH
- Proto-Oncogene Proteins c-akt metabolism MeSH
- Signal Transduction MeSH
- Mitochondria, Heart * metabolism MeSH
- Heart Failure * metabolism physiopathology genetics MeSH
- Stroke Volume MeSH
- Adipose Tissue metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adiponectin MeSH
- FGF21 protein, human MeSH Browser
- fibroblast growth factor 21 MeSH Browser
- Fibroblast Growth Factors * MeSH
- Phosphatidylinositol 3-Kinases MeSH
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase MeSH
- Pdk4 protein, mouse MeSH Browser
- Proto-Oncogene Proteins c-akt MeSH
Fibroblast growth factor 21 (FGF21), a metabolic hormone with pleiotropic effects, is beneficial for various cardiac disorders. However, FGF21's role in heart failure with preserved ejection fraction (HFpEF) remains unclear. Here, we show that elevated circulating FGF21 levels are negatively associated with cardiac diastolic function in patients with HFpEF. Global or adipose FGF21 deficiency exacerbates cardiac diastolic dysfunction and damage in high-fat diet (HFD) plus N[w]-nitro-L-arginine methyl ester (L-NAME)-induced HFpEF mice, whereas these effects are notably reversed by FGF21 replenishment. Mechanistically, FGF21 enhances the production of adiponectin (APN), which in turn indirectly acts on cardiomyocytes, or FGF21 directly targets cardiomyocytes, to negatively regulate pyruvate dehydrogenase kinase 4 (PDK4) production by activating PI3K/AKT signals, then promoting mitochondrial bioenergetics. Additionally, APN deletion strikingly abrogates FGF21's protective effects against HFpEF, while genetic PDK4 inactivation markedly mitigates HFpEF in mice. Thus, FGF21 protects against HFpEF via fine-tuning the multiorgan crosstalk among the adipose, liver, and heart.
Affiliated Hospital of Guangdong Medical University Zhanjiang China
School of Pharmaceutical Sciences Wenzhou Medical University Wenzhou China
State Key Laboratory of Pharmaceutical Biotechnology The University of Hong Kong Hong Kong China
The Affiliated Hospital of Wenzhou Medical University Wenzhou China
See more in PubMed
Kharitonenkov, A. et al. FGF-21 as a novel metabolic regulator. J. Clin. Investig.115, 1627–1635 (2005). PubMed PMC
Fisher, F. M. & Maratos-Flier, E. Understanding the physiology of FGF21. Annu. Rev. Physiol.78, 223–241 (2016). PubMed
Salminen, A., Kaarniranta, K. & Kauppinen, A. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses. Ageing Res. Rev.37, 79–93 (2017). PubMed
Coskun, T. et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology149, 6018–6027 (2008). PubMed
Kharitonenkov, A. et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology148, 774–781 (2007). PubMed
Xu, J. et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes58, 250–259 (2009). PubMed PMC
Flippo, K. H. & Potthoff, M. J. Metabolic Messengers: FGF21. Nat. Metab.3, 309–317 (2021). PubMed PMC
Li, H. et al. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes61, 797–806 (2012). PubMed PMC
Kim, K. H. & Lee, M. S. FGF21 as a mediator of adaptive responses to stress and metabolic benefits of anti-diabetic drugs. J. Endocrinol.226, R1–R16 (2015). PubMed
Ito, S. et al. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mechanisms Dev.98, 115–119 (2000). PubMed
Adams, A. C., Cheng, C. C., Coskun, T. & Kharitonenkov, A. FGF21 requires betaklotho to act in vivo. PloS ONE7, e49977 (2012). PubMed PMC
Chen, W. et al. Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes. J. Biol. Chem.286, 34559–34566 (2011). PubMed PMC
Chau, M. D., Gao, J., Yang, Q., Wu, Z. & Gromada, J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc. Natl Acad. Sci. USA107, 12553–12558 (2010). PubMed PMC
Murata, Y., Konishi, M. & Itoh, N. FGF21 as an endocrine regulator in lipid metabolism: from molecular evolution to physiology and pathophysiology. J. Nutr. Metab.2011, 981315 (2011). PubMed PMC
Fisher, F. M. et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev.26, 271–281 (2012). PubMed PMC
Lin, Z. et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab.17, 779–789 (2013). PubMed
Joki, Y. et al. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism. Biochem. Biophys. Res. Commun.459, 124–130 (2015). PubMed
Lin, Z. et al. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation131, 1861–1871 (2015). PubMed PMC
Wu, F. et al. FGF21 ameliorates diabetic cardiomyopathy by activating the AMPK-paraoxonase 1 signaling axis in mice. Clin. Sci.131, 1877–1893 (2017). PubMed
Pan, X. et al. FGF21 prevents Angiotensin II-Induced hypertension and vascular dysfunction by activation of ACE2/Angiotensin-(1-7) Axis in Mice. Cell Metab.27, 1323–1337.e1325 (2018). PubMed
Redfield, M. M. & Borlaug, B. A. Heart failure with preserved ejection fraction: a review. Jama329, 827–838 (2023). PubMed
Sharma, K. & Kass, D. A. Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ. Res.115, 79–96 (2014). PubMed PMC
Ianoș, R. D. et al. Diagnostic performance of serum biomarkers fibroblast growth factor 21, Galectin-3 and Copeptin for heart failure with preserved ejection fraction in a sample of patients with type 2 Diabetes Mellitus. Diagnostics11, 1577 (2021). PubMed PMC
Chou, R. H. et al. Circulating fibroblast growth factor 21 is associated with diastolic dysfunction in heart failure patients with preserved ejection fraction. Sci. Rep.6, 33953 (2016). PubMed PMC
Schiattarella, G. G. et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature568, 351–356 (2019). PubMed PMC
Pan, Y. et al. Pancreatic fibroblast growth factor 21 protects against type 2 diabetes in mice by promoting insulin expression and secretion in a PI3K/Akt signaling-dependent manner. J. Cell Mol. Med.23, 1059–1071 (2019). PubMed PMC
Rosales-Soto G., Diaz-Vegas A., Casas M., Contreras-Ferrat A. & Jaimovich E. Fibroblast growth factor-21 potentiates glucose transport in skeletal muscle fibers. J. Mol. Endocrinol.65, 85–95 (2020). PubMed
Hui, X., Lam, K. S., Vanhoutte, P. M. & Xu, A. Adiponectin and cardiovascular health: an update. Br. J. Pharm.165, 574–590 (2012). PubMed PMC
Tanaka, K. et al. Effects of adiponectin on calcium-handling proteins in heart failure with preserved ejection fraction. Circ. Heart Fail7, 976–985 (2014). PubMed PMC
Francisco, C., Neves, J. S., Falcão-Pires, I. & Leite-Moreira, A. Can Adiponectin help us to target diastolic dysfunction? Cardiovasc. Drugs Ther.30, 635–644 (2016). PubMed
Liu, L. et al. Adiponectin attenuates lipopolysaccharide-induced apoptosis by regulating the Cx43/PI3K/AKT pathway. Front. Pharm.12, 644225 (2021). PubMed PMC
Xu, Z. P. et al. Adiponectin Attenuates Streptozotocin-Induced Tau Hyperphosphorylation and Cognitive Deficits by Rescuing PI3K/Akt/GSK-3β Pathway. Neurochem. Res.43, 316–323 (2018). PubMed
Zhou, Y., Wei, L. L., Zhang, R. P., Han, C. W. & Cao, Y. Globular adiponectin inhibits osteoblastic differentiation of vascular smooth muscle cells through the PI3K/AKT and Wnt/β-catenin pathway. J. Mol. Histol.52, 1067–1080 (2021). PubMed PMC
Yang, X. et al. FGF21 alleviates acute liver injury by inducing the SIRT1-autophagy signalling pathway. J. Cell Mol. Med.26, 868–879 (2022). PubMed PMC
Ding, P. et al. Fibroblast growth factor 21 attenuates ventilator-induced lung injury by inhibiting the NLRP3/caspase-1/GSDMD pyroptotic pathway. Crit. Care27, 196 (2023). PubMed PMC
Xie, W. et al. Serum FGF21 levels predict the MACE in patients with myocardial infarction after coronary artery bypass graft surgery. Front. Cardiovasc. Med.9, 850517 (2022). PubMed PMC
Refsgaard Holm, M. et al. Fibroblast growth factor 21 in patients with cardiac cachexia: a possible role of chronic inflammation. ESC Heart Fail6, 983–991 (2019). PubMed PMC
Geng, L., Lam, K. S. L. & Xu, A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat. Rev. Endocrinol.16, 654–667 (2020). PubMed
Bottomley, P. A. et al. Metabolic rates of ATP transfer through creatine kinase (CK Flux) predict clinical heart failure events and death. Sci. Transl. Med.5, 215re213 (2013). PubMed PMC
Capone, F. et al. Cardiac metabolism in HFpEF: from fuel to signalling. Cardiovasc Res.118, 3556–3575 (2023). PubMed
Bertero, E. & Maack, C. Metabolic remodelling in heart failure. Nat. Rev. Cardiol.15, 457–470 (2018). PubMed
Karwi, Q. G., Uddin, G. M., Ho, K. L. & Lopaschuk, G. D. Loss of metabolic flexibility in the failing heart. Front. Cardiovasc. Med.5, 68 (2018). PubMed PMC
Tran, D. H. & Wang, Z. V. Glucose metabolism in cardiac hypertrophy and heart failure. J. Am. Heart Assoc.8, e012673 (2019). PubMed PMC
Mori, J. et al. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ. Heart Fail5, 493–503 (2012). PubMed
Cluntun, A. A. et al. The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metab.33, 629–648.e610 (2021). PubMed PMC
Gopal, K. et al. FoxO1 inhibition alleviates type 2 diabetes-related diastolic dysfunction by increasing myocardial pyruvate dehydrogenase activity. Cell Rep.35, 108935 (2021). PubMed
Tong, D. et al. NAD(+) repletion reverses heart failure with preserved ejection fraction. Circ. Res.128, 1629–1641 (2021). PubMed PMC
Ni, J. et al. Rg3 regulates myocardial pyruvate metabolism via P300-mediated dihydrolipoamide dehydrogenase 2-hydroxyisobutyrylation in TAC-induced cardiac hypertrophy. Cell Death Dis.13, 1073 (2022). PubMed PMC
Pan, X. et al. FGF21 prevents angiotensin ii-induced hypertension and vascular dysfunction by activation of ACE2/Angiotensin-(1-7) Axis in Mice. Cell Metab.27, 1323–1337.e1325 (2018). PubMed
Pilegaard, H. & Neufer, P. D. Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise. Proc. Nutr. Soc.63, 221–226 (2004). PubMed
Cardoso, A. C. et al. Mitochondrial substrate utilization regulates cardiomyocyte cell cycle progression. Nat. Metab.2, 167–178 (2020). PubMed PMC
Yin, Q., Wang, P. & Wu, X. MicroRNA -148 alleviates cardiac dysfunction, immune disorders and myocardial apoptosis in myocardial ischemia-reperfusion (MI/R) injury by targeting pyruvate dehydrogenase kinase (PDK4). Bioengineered12, 5552–5565 (2021). PubMed PMC
Zhao, G. et al. Overexpression of pyruvate dehydrogenase kinase 4 in heart perturbs metabolism and exacerbates calcineurin-induced cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol.294, H936–H943 (2008). PubMed
Holland, W. L. et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab.17, 790–797 (2013). PubMed PMC
Fang, H. & Judd, R. L. Adiponectin regulation and function. Compr. Physiol.8, 1031–1063 (2018). PubMed
Hopkins, T. A., Ouchi, N., Shibata, R. & Walsh, K. Adiponectin actions in the cardiovascular system. Cardiovasc. Res.74, 11–18 (2007). PubMed PMC
Shioji, K. et al. [Hypoadiponectinemia implies the development of atherosclerosis in carotid and coronary arteries]. J. Cardiol.46, 105–112 (2005). PubMed
Ouchi, N., Shibata, R. & Walsh, K. Cardioprotection by adiponectin. Trends Cardiovasc. Med.16, 141–146 (2006). PubMed PMC
Kruszewska J., Cudnoch-Jedrzejewska A. & Czarzasta K. Remodeling and fibrosis of the cardiac muscle in the course of obesity-pathogenesis and involvement of the extracellular matrix. Int. J. Mol. Sci.23, 4195 (2022). PubMed PMC
Wang, H. T. et al. Effect of obesity reduction on preservation of heart function and attenuation of left ventricular remodeling, oxidative stress and inflammation in obese mice. J. Transl. Med.10, 145 (2012). PubMed PMC
Ke, B. et al. Aldosterone dysregulation predicts the risk of mortality and rehospitalization in heart failure with a preserved ejection fraction. Sci. China Life Sci.65, 631–642 (2022). PubMed
Xie, W. et al. Myocardial infarction accelerates the progression of MASH by triggering immunoinflammatory response and induction of periosti. Cell Metab.36, 1269–1286.e1269 (2024). PubMed
Ito, T. et al. Adenoassociated virus-mediated prostacyclin synthase expression prevents pulmonary arterial hypertension in rats. Hypertension50, 531–536 (2007). PubMed
Gao, W. et al. Inhibiting receptor of advanced glycation end products attenuates pressure overload-induced cardiac dysfunction by preventing excessive autophagy. Front. Physiol.9, 1333 (2018). PubMed PMC
Lei, I. et al. Acetyl-CoA production by specific metabolites promotes cardiac repair after myocardial infarction via histone acetylation. Elife10, e60311 (2021). PubMed PMC
Liu, Y. et al. Spexin protects cardiomyocytes from hypoxia-induced metabolic and mitochondrial dysfunction. Naunyn Schmiedebergs Arch. Pharm.393, 25–33 (2020). PubMed