Low-cost camera-based assessment of venous hemodynamics in the lower limbs: a study on young healthy volunteers
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39958860
PubMed Central
PMC11828450
DOI
10.1364/boe.547794
PII: 547794
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
This paper presents a non-contact and cost-effective method to assess venous hemodynamics along the lower limbs using photoplethysmography imaging (PPGI). Seventeen healthy volunteers performed the venous muscle pump test, inducing venous blood volume changes in their lower legs, which were recorded using a webcam. PPGI signals were extracted from three regions along the lower leg. Key parameters derived from a physiological model were evaluated and analyzed statistically: perfusion amplitude, ejection time constant, and peripheral venous flow index. The method demonstrated robust estimation of physiologically explainable parameters, and the potential to improve venous function diagnostics with high spatial resolution.
Dept of Electromagnetic and Biomedical Engineering University of Zilina Zilina Slovakia
Medical Information Technology RWTH Aachen University Aachen Germany
See more in PubMed
Ortega M. A., Fraile-Martínez O., García-Montero C., et al. , “Understanding Chronic Venous Disease: A Critical Overview of Its Pathophysiology and Medical Management,” J. Clin. Med. 10(15), 3239 (2021).10.3390/jcm10153239 PubMed DOI PMC
Spiridon M., Corduneanu D., “Chronic venous insufficiency: a frequently underdiagnosed and undertreated pathology,” Maedica 12(1), 59–61 (2017). PubMed PMC
Recek C., “Calf pump activity influencing venous hemodynamics in the lower extremity,” Int. J. Angiol. 22(01), 023–030 (2013).10.1055/s-0033-1334092 PubMed DOI PMC
Meissner M. H., Moneta G., Burnand K., et al. , “The hemodynamics and diagnosis of venous disease,” Journal of vascular surgery 46(6), S4–S24 (2007).10.1016/j.jvs.2007.09.043 PubMed DOI
Horwood A., “The Venous Foot Pump: Modelling its function in gait,” Podiatr. Rev. 78, 19–23 (2021).
van Langevelde K., Srámek A., Rosendaal F. R., “The effect of aging on venous valves,” Arterioscler., Thromb., Vasc. Biol. 30(10), 2075–2080 (2010).10.1161/ATVBAHA.110.209049 PubMed DOI
Halkar M., Medina Inojosa J., Liedl D., et al. , “Calf muscle pump function as a predictor of all-cause mortality,” Vasc Med 25(6), 519–526 (2020).10.1177/1358863X20953212 PubMed DOI
Chung J. H., Heo S., “Varicose veins and the diagnosis of chronic venous disease in the lower extremities,” J Chest Surg 57(2), 109–119 (2024).10.5090/jcs.23.110 PubMed DOI PMC
Williams K. J., Ayekoloye O., Moore H. M., et al. , “The calf muscle pump revisited,” Journal of vascular surgery. Venous and lymphatic disorders 2(3), 329–334 (2014).10.1016/j.jvsv.2013.10.053 PubMed DOI
Niccolini G., Manuello A., Capone A., et al. , “Possible assessment of calf venous pump efficiency by computational fluid dynamics approach,” Front. Physiol. 11, 1003 (2020).10.3389/fphys.2020.01003 PubMed DOI PMC
Gatehouse P. D., Keegan J., Crowe L. A., et al. , “Applications of phase-contrast flow and velocity imaging in cardiovascular MRI,” Eur Radiol 15(10), 2172–2184 (2005).10.1007/s00330-005-2829-3 PubMed DOI
Wang X., Quantitative Erfassung des Schweregrades der venösen Insuffienz anhand hämodynamischer Parameter: sind sonographische Flussparameter in der Magnetresonanztherapie mittels Phasenkontrasttechnik reproduzierbar? (Universität zu Lübeck, 2019).
Kahle B., Hummel S., Kirchner P., “Korrelationsindex des Stromzeitvolumens in der Arteria und Vena femoralis communis SV-VA-Index bei verschiedenen Stadien der Varikosis,” Phlebologie 29(01), 12–16 (2000).10.1055/s-0037-1617323 DOI
Kahle B., Hummel S., Kirchner P., “Quantifizierung des Effekts von Varizenoperationen auf die venöse Hämodynamik mittels des veno-arteriellen Flow-Index (VAFI),” Phlebologie 39(01), 1 (2010).10.1055/s-0037-1622292 DOI
Abu-Halimah S., Marston W., “Plethysmographic techniques in the diagnosis of venous disease,” in Noninvasive Vascular Diagnosis , AbuRahma A. F. , ed. (Springer, 2020), pp. 1–14.
Allen J., Kyriacou P. A., Photoplethysmography: Technology, Signal Analysis and Applications: Technology, signal analysis and applications , eds (London University, 2021).
Blazek V., Blazek C., “Peripheral venous dynamics, venous oxygen saturation and local oxygen consumption measured with an extended photoplethysmograpic muscle pump test,” Studies in Skin Perfusion Dynamics: Photoplethysmography and its Applications in Medical Diagnostics , Blažek V., Kumar J., Leonhardt S., Mukunda Rao M., eds. (Springer, Singapore, 2021), Biological and Medical Physics, Biomedical Engineering. pp. 93–103.
Nüllen H., Noppeney T., Blazek V., et al. , “Hämodynamische Diagnostik,” Varikose , Goldhorn K.-H., ed. ( Springer, [Place of publication not identified], 2010), pp. 75–91.
Bhooma G., Kokila S., Jayanthi K., et al. , “A digital instrument for venous muscle pump test,” 2011 IEEE International Instrumentation and Measurement Technology Conference, (Curran Associates, 2011), pp. 1–4.
Badiola I., Lyu C., Ferchland A., et al. , “Muscle stimulation for peripheral venous oxygen saturation estimation using photoplethysmography: a proof-of-concept,” Current Directions in Biomedical Engineering 9(1), 146–149 (2023).10.1515/cdbme-2023-1037 DOI
Lai M., van der Stel S. D., Groen H. C., et al. , “Imaging PPG for In Vivo Human Tissue Perfusion Assessment during Surgery,” J. Imaging 8(4), 94 (2022).10.3390/jimaging8040094 PubMed DOI PMC
Wang W., Wang X., eds. Contactless vital signs monitoring (London University, London, 2022).
Nishidate I., Yasui R., Nagao N., et al. , “RGB camera-based simultaneous measurements of percutaneous arterial oxygen saturation, tissue oxygen saturation, pulse rate, and respiratory rate,” Front. Physiol. 13, 933397 (2022).10.3389/fphys.2022.933397 PubMed DOI PMC
Volkov I. Y., Sagaidachnyi A. A., Fomin A. V., “Photoplethysmographic Imaging of Hemodynamics and Two-Dimensional Oximetry,” Opt. Spectrosc. 130(7), 452–469 (2022).10.1134/S0030400X22080057 PubMed DOI PMC
Huelsbusch M., Blazek V., “Contactless mapping of rhythmical phenomena in tissue perfusion using PPGI,” in Medical Imaging 2002: Physiology and Function from Multidimensional Images , Clough A. V., Chen C.-T., eds. (SPIE, 2002), SPIE Proceedings, p.110.
Lai M., Shan C., Ciuhu-Pijlman C., et al. , “Perfusion monitoring by contactless photoplethy smography imaging,” ISBI 2019 , (IEEE, 2019), pp. 1778–1782.
Borik S., Lyra S., Perlitz V., et al. , “On the spatial phase distribution of cutaneous low-frequency perfusion oscillations,” Sci. Rep. 12(1), 5997 (2022).10.1038/s41598-022-09762-0 PubMed DOI PMC
Borik S., Procka P., Kubicek J., et al. , “Skin tissue perfusion mapping triggered by an audio-(de)modulated reference signal,” Biomed. Opt. Express 13(7), 4058–4070 (2022).10.1364/BOE.461087 PubMed DOI PMC
van Gastel M., Liang H., Stuijk S., et al. , “Simultaneous estimation of arterial and venous oxygen saturation using a camera,” Optical diagnostics and sensing XVIII: Toward Point-of-Care Diagnostics , Coté G., ed. ( SPIE, 2018), Progress in Biomedical Optics and Imaging, p. 31.
Li J., Dunmire B., Beach K. W., et al. , “A reflectance model for non-contact mapping of venous oxygen saturation using a CCD camera,” Opt. Commun. 308, 78–84 (2013).10.1016/j.optcom.2013.06.041 DOI
Nakano K., Aoki Y., Satoh R., et al. , “Visualization of venous compliance of superficial veins using non-contact plethysmography based on digital red-green-blue images,” Sensors 16(12), 1996 (2016).10.3390/s16121996 PubMed DOI PMC
Amelard R., Robertson A. D., Patterson C. A., et al. , “Optical hemodynamic imaging of jugular venous dynamics during altered central venous pressure,” IEEE Trans. Biomed. Eng. 68(8), 2582–2591 (2021).10.1109/TBME.2021.3069133 PubMed DOI
Arrow C., Ward M., Eshraghian J., et al. , “Capturing the pulse: a state-of-the-art review on camera-based jugular vein assessment,” Biomed. Opt. Express 14(12), 6470–6492 (2023).10.1364/BOE.507418 PubMed DOI PMC
Kamshilin A. A., Zaytsev V. V., Mamontov O. V., “Novel contactless approach for assessment of venous occlusion plethysmography by video recordings at the green illumination,” Sci. Rep. 7(1), 464 (2017).10.1038/s41598-017-00552-7 PubMed DOI PMC
Badiola I., Seleng J., Weiss C., et al. , “Mapping of peripheral venous hemodynamics using a low-cost camera: a proof-of-concept,” in Workshop Biosignals, (2024).
Ernst H., Scherpf M., Malberg H., et al. , “Optimal color channel combination across skin tones for remote heart rate measurement in camera-based photoplethysmography,” Biomed. Signal Process. Control 68, 102644 (2021).10.1016/j.bspc.2021.102644 DOI
Verkruysse W., Svaasand L. O., Nelson J. S., “Remote plethysmographic imaging using ambient light,” Opt. Express 16(26), 21434–21445 (2008).10.1364/OE.16.021434 PubMed DOI PMC
Snyder M. F., Rideout V. C., “Computer simulation studies of the venous circulation,” IEEE Trans. Biomed. Eng. BME-16(4), 325–334 (1969).10.1109/TBME.1969.4502663 PubMed DOI
Ursino M., Antonucci M., Belardinelli E., “Role of active changes in venous capacity by the carotid baroreflex: Analysis with a mathematical model,” The American journal of physiology 267(6), H2531–H2546 (1994).10.1152/ajpheart.1994.267.6.H2531 PubMed DOI
Lee J., Noh H., Yoon Y., et al. , “Mathematical model of venous occlusion plethysmography for diagnosing deep vein thrombosis,” 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1 (2001), pp.124–125.
Fragomeni G., Merola A., Serra R., et al. , “A nonlinear lumped parameters model to analyze the dynamics of venous reflux,” 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (2008), pp.1407–1410. PubMed
Westerhof N., Lankhaar J.-W., Westerhof B., “The arterial windkessel,” Med. Biol. Eng. Comput. 47(2), 131–141 (2009).10.1007/s11517-008-0359-2 PubMed DOI
McCulloch C., Searle S., Neuhaus J., Generalized, Linear, and Mixed Models (Wiley-Interscience, 2001).
Alimi Y., Barthelemy P., Juhan C., “Venous pump of the calf: A study of venous and muscular pressures,” Journal of Vascular Surgery 20(5), 728–735 (1994).10.1016/S0741-5214(94)70160-1 PubMed DOI
Moço A., Stuijk S., Haan G., “Ballistocardiographic artifacts in ppg imaging,” IEEE Trans. Biomed. Eng. 63(9), 1804–1811 (2016).10.1109/TBME.2015.2502398 PubMed DOI
Moço A., Stuijk S., Haan G., “New insights into the origin of remote ppg signals in visible light and infrared,” Sci. Rep. 8(1), 8501 (2018).10.1038/s41598-018-26068-2 PubMed DOI PMC
Houghton D., Ashrani A., Liedl D., et al. , “Reduced calf muscle pump function is a risk factor for venous thromboembolism: a population-based cohort study,” Blood 137(23), 3284–3290 (2021).10.1182/blood.2020010231 PubMed DOI PMC
Hirai M., Naiki K., Nakayama R., “Chronic venous insufficiency in primary varicose veins evaluated by plethysmographic technique,” Angiology 42(6), 468–472 (1991).10.1177/000331979104200606 PubMed DOI
Tansey E. A., Montgomery L. E. A., Quinn J. G., et al. , “Understanding basic vein physiology and venous blood pressure through simple physical assessments,” Advances in Physiology Education 43(3), 423–429 (2019).10.1152/advan.00182.2018 PubMed DOI
Libertiny G H. L., “Lower limb deep venous flow in patients with peripheral vascular disease,” Journal of vascular surgery 29(6), 1065–1070 (1999).10.1016/S0741-5214(99)70247-8 PubMed DOI
Crisóstomo R., Candeias M., Armada-da Silva P., “The use of ultrasound in the evaluation of the efficacy of calf muscle pump function in primary chronic venous disease,” Phlebology 29(4), 247–256 (2014).10.1177/0268355512471757 PubMed DOI