On the spatial phase distribution of cutaneous low-frequency perfusion oscillations

. 2022 Apr 09 ; 12 (1) : 5997. [epub] 20220409

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35397640
Odkazy

PubMed 35397640
PubMed Central PMC8994784
DOI 10.1038/s41598-022-09762-0
PII: 10.1038/s41598-022-09762-0
Knihovny.cz E-zdroje

Distributed cutaneous tissue blood volume oscillations contain information on autonomic nervous system (ANS) regulation of cardiorespiratory activity as well as dominating thermoregulation. ANS associated with low-frequency oscillations can be quantified in terms of frequencies, amplitudes, and phase shifts. The relative order between these faculties may be disturbed by conditions colloquially termed 'stress'. Photoplethysmography imaging, an optical non-invasive diagnostic technique provides information on cutaneous tissue perfusion in the temporal and spatial domains. Using the cold pressure test (CPT) in thirteen healthy volunteers as a well-studied experimental intervention, we present a method for evaluating phase shifts in low- and intermediate frequency bands in forehead cutaneous perfusion mapping. Phase shift changes were analysed in low- and intermediate frequency ranges from 0.05 Hz to 0.18 Hz. We observed that time waveforms increasingly desynchronised in various areas of the scanned area throughout measurements. An increase of IM band phase desynchronization observed throughout measurements was comparable in experimental and control group, suggesting a time effect possibly due to overshooting the optimal relaxation duration. CPT triggered an increase in the number of points phase-shifted to the reference that was specific to the low frequency range for phase-shift thresholds defined as π/4, 3π/8, and π/2 rad, respectively. Phase shifts in forehead blood oscillations may infer changes of vascular tone due to activity of various neural systems. We present an innovative method for the phase shift analysis of cutaneous tissue perfusion that appears promising to assess ANS change processes related to physical or psychological stress. More comprehensive studies are needed to further investigate the reliability and physiological significance of findings.

Zobrazit více v PubMed

Haken H, Koepchen HP. Physiology of rhythms and control systems: An integrative approach. In: Haken H, Koepchen HP, editors. Rhythms in Physiological Systems. Springer; 1991. pp. 3–20.

Schmid-Schönbein, H., Ziege, S., Blazek, V & Perlitz, V. New paradigm. Objective quantification of temporal patterns in skin perfusion. In Computer-Aided Noninvasive Vascular Diagnostics. Vol. 1: Proceedings of 9th International Symposium CNVD 2000 (eds Blazek, V., Schultz-Ehrenburg, U., Stvrtinova, V. 75–98 (2000).

Hertzman AB. Photoelectric plethysmography of the fingers and toes in man. Proc. Soc. Exp. Biol. Med. 1937;37(3):529–534. doi: 10.3181/00379727-37-9630. DOI

Zaunseder S, Trumpp A, Wedekind D, Malberg H. Cardiovascular assessment by imaging photoplethysmography—A review. Biomed. Eng. Biomedizinische Technik. 2018;63(5):617–634. doi: 10.1515/bmt-2017-0119. PubMed DOI

Deutsch F. Some psychodynamic considerations of psychosomatic skin disorders: Plethysmographic and psychoanalytic observations. Psychosom. Med. 1952;14(4):287–294. doi: 10.1097/00006842-195207000-00007. PubMed DOI

Häfner H-M, et al. Wavelet analysis of skin perfusion in healthy volunteers. Microcirculation. 2007;14(2):137–144. doi: 10.1080/10739680601131234. PubMed DOI

Rassler B, Schwerdtfeger A, Aigner CS, Pfurtscheller G. ‘Switch-off’ of respiratory sinus arrhythmia can occur in a minority of subjects during functional magnetic resonance imaging (fMRI) Front. Physiol. 2018;9:1688. doi: 10.3389/fphys.2018.01688. PubMed DOI PMC

Kettunen J, Keltikangas-Järvinen L. Intraindividual analysis of instantaneous heart rate variability. Psychophysiology. 2001;38(4):659–668. doi: 10.1111/1469-8986.3840659. PubMed DOI

Lambertz M, Langhorst P. Simultaneous changes of rhythmic organization in brainstem neurons, respiration, cardiovascular system and EEG between 0.05 Hz and 0.5 Hz. J. Auton. Nerv. Syst. 1998;68(1–2):58–77. doi: 10.1016/S0165-1838(97)00126-4. PubMed DOI

Perlitz V, et al. Cardiovascular rhythms in the 0.15-Hz band: Common origin of identical phenomena in man and dog in the reticular formation of the brain stem? Pflugers Arch. Eur. J. Physiol. 2004;448(6):579–591. doi: 10.1007/s00424-004-1291-4. PubMed DOI

Smits T, Aarnoudse J, Geerdink J, Zijlstra W. Hyperventilation-induced changes in periodic oscillations in forehead skin blood flow measured by laser Doppler flowmetry. Int. J. Microcirc. Clin. Exp. 1987;6(2):149–159. PubMed

Ziege, S. Optoelektronische Analyse von aktiven und passiven Hautperfusionsrhythmen und deren Bedeutung hinsichtlich der zentralen vegetativen regulation (1992).

Perlitz V, et al. Coordination dynamics of circulatory and respiratory rhythms during psychomotor drive reduction. Auton. Neurosci. 2004;115(1–2):82–93. doi: 10.1016/j.autneu.2004.07.007. PubMed DOI

Traube L. Ueber periodische Thätigkeits-Aeusserungen des vasomotorischen und Hemmungs-Nervencentrum. Centralblatt Medicin. Wissenschaften Berlin. 1865;3:881–885.

Wu T, Blazek V, Schmitt HJ. “Photoplethysmography imaging: A new noninvasive and noncontact method for mapping of the dermal perfusion changes. Int. Soc. Opt. Photon. 2000;4163:62–70.

Leonhardt, S. Concluding remarks and new horizons in skin perfusion studies. In Studies in Skin Perfusion Dynamics 223–232 (Springer, 2021).

Borik S, Lyra S, Paul M, Antink CH, Leonhardt S, Blazek V. Photoplethysmography imaging: Camera performance evaluation by means of an optoelectronic skin perfusion phantom. Physiol. Meas. 2020;41(5):054001. doi: 10.1088/1361-6579/ab87b3. PubMed DOI

McDuff, D., Estepp, J., Piasecki, A., & Blackford, E. A survey of remote optical photoplethysmographic imaging methods. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 6398–6404 (2015). PubMed

Verkruysse W, Svaasand LO, Nelson JS. Remote plethysmographic imaging using ambient light. Opt. Express. 2008;16(26):21434–21445. doi: 10.1364/OE.16.021434. PubMed DOI PMC

Blanik N, Abbas AK, Venema B, Blazek V, Leonhardt S. Hybrid optical imaging technology for long-term remote monitoring of skin perfusion and temperature behavior. J. Biomed. Opt. 2014;19(1):016012. doi: 10.1117/1.JBO.19.1.016012. PubMed DOI

Zaproudina N, et al. Asynchronicity of facial blood perfusion in migraine. PLoS ONE. 2013;8(12):e80189. doi: 10.1371/journal.pone.0080189. PubMed DOI PMC

Kamshilin AA, Miridonov S, Teplov V, Saarenheimo R, Nippolainen E. Photoplethysmographic imaging of high spatial resolution. Biomed. Opt. Express. 2011;2(4):996–1006. doi: 10.1364/BOE.2.000996. PubMed DOI PMC

Kamshilin AA, Teplov V, Nippolainen E, Miridonov S, Giniatullin R. Variability of microcirculation detected by blood pulsation imaging. PLoS ONE. 2013;8(2):e57117. doi: 10.1371/journal.pone.0057117. PubMed DOI PMC

Kamshilin AA, et al. A new look at the essence of the imaging photoplethysmography. Sci. Rep. 2015;5(1):1–9. doi: 10.1038/srep10494. PubMed DOI PMC

Moço AV, Stuijk S, de Haan G. New insights into the origin of remote PPG signals in visible light and infrared. Sci. Rep. 2018;8(1):8501. doi: 10.1038/s41598-018-26068-2. PubMed DOI PMC

Schwerdtfeger AR, Schwarz G, Pfurtscheller K, Thayer JF, Jarczok MN, Pfurtscheller G. Heart rate variability (HRV): From brain death to resonance breathing at 6 breaths per minute. Clin. Neurophysiol. 2020;131(3):676–693. doi: 10.1016/j.clinph.2019.11.013. PubMed DOI

Keller M, et al. Neural correlates of fluctuations in the intermediate band for heart rate and respiration are related to interoceptive perception. Psychophysiology. 2020;57:9. doi: 10.1111/psyp.13594. PubMed DOI

Gräfe K, Zipfel S, Herzog W, Löwe B. Screening psychischer Störungen mit dem “Gesundheitsfragebogen für Patienten (PHQ-D)”. Diagnostica. 2004;50(4):171–181. doi: 10.1026/0012-1924.50.4.171. DOI

Lyra, S. & Paul, M. Organic LED panels for pulse rate measurement using photoplethysmography imaging. In 23rd International Student Conference on Electrical Engineering - POSTER 2019, Prague 1–4 (2019).

Kumar M, Veeraraghavan A, Sabharwal A. DistancePPG: Robust non-contact vital signs monitoring using a camera. Biomed. Opt. Express. 2015;6(5):1565–1588. doi: 10.1364/BOE.6.001565. PubMed DOI PMC

Iozzia L, Cerina L, Mainardi L. Relationships between heart-rate variability and pulse-rate variability obtained from video-PPG signal using ZCA. Physiol. Meas. 2016;37(11):1934. doi: 10.1088/0967-3334/37/11/1934. PubMed DOI

Gambi E, et al. Heart rate detection using microsoft kinect: Validation and comparison to wearable devices. Sensors. 2017;17(8):1776. doi: 10.3390/s17081776. PubMed DOI PMC

Tarbox, E. A. et al. Motion correction for improved estimation of heart rate using a visual spectrum camera. In Smart Biomedical and Physiological Sensor Technology XIV, California, United States, Vol. 10216, p. 1021607 (2017).

Butler M, Crowe JA, Hayes-Gill BR, Rodmell PI. Motion limitations of non-contact photoplethysmography due to the optical and topological properties of skin. Physiol. Meas. 2016;37(5):N27. doi: 10.1088/0967-3334/37/5/N27. PubMed DOI

Viola, P. & Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Vol. 1, I–I (2001).

Shi, J. & Tomasi. Good features to track. In 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 593–600. 10.1109/CVPR.1994.323794 (1994).

Lucas, B. D. & Kanade, T. An iterative image registration technique with an application to stereo vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence, Vancouver, Canada 674–679 (1981).

Tomasi C, Kanade T. Detection and tracking of point features. School of Computer Science, Carnegie Mellon Univ.; 1991.

Nason, G. P. & Silverman, B. W. The stationary wavelet transform and some statistical applications. In Wavelets and Statistics 281–299 (Springer, 1995).

Coifman, R. R. & Donoho, D. L. Translation-invariant de-noising. In Wavelets and statistics 125–150 (Springer, 1995).

Pesquet J-C, Krim H, Carfantan H. Time-invariant orthonormal wavelet representations. IEEE Trans. Signal Process. 1996;44(8):1964–1970. doi: 10.1109/78.533717. DOI

Liu H, Chen F, Hartmann V, Khalid SG, Hughes S, Zheng D. Comparison of different modulations of photoplethysmography in extracting respiratory rate: From a physiological perspective. Physiol. Meas. 2020;41(9):094001. doi: 10.1088/1361-6579/abaaf0. PubMed DOI

Langhorst, P., Schulz, G. & Lambertz, M. Oscillating neuronal network of the “Common Brainstem System". Mech. Blood Pressure Waves 257–275 (1984).

Meredith DJ, Clifton D, Charlton P, Brooks J, Pugh C, Tarassenko L. Photoplethysmographic derivation of respiratory rate: A review of relevant physiology. J. Med. Eng. Technol. 2012;36(1):1–7. doi: 10.3109/03091902.2011.638965. PubMed DOI

Hernando A, Peláez-Coca MD, Lozano M, Lázaro J, Gil E. Finger and forehead PPG signal comparison for respiratory rate estimation. Physiol Meas. 2019;40(9):095007. doi: 10.1088/1361-6579/ab3be0. PubMed DOI

Pfurtscheller G, et al. Distinction between neural and vascular BOLD oscillations and intertwined heart rate oscillations at 0.1 Hz in the resting state and during movement. PLoS ONE. 2017;12(1):e0168097. doi: 10.1371/journal.pone.0168097. PubMed DOI PMC

Friedman BH. An autonomic flexibility–neurovisceral integration model of anxiety and cardiac vagal tone. Biol. Psychol. 2007;74(2):185–199. doi: 10.1016/j.biopsycho.2005.08.009. PubMed DOI

Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013 doi: 10.3389/fphys.2013.00026. PubMed DOI PMC

Porges SW. The polyvagal perspective. Biol. Psychol. 2007;74(2):116–143. doi: 10.1016/j.biopsycho.2006.06.009. PubMed DOI PMC

Kromenacker BW, Sanova AA, Marcus FI, Allen JJB, Lane RD. Vagal mediation of low-frequency heart rate variability during slow yogic breathing. Psychosom. Med. 2018;80(6):581–587. doi: 10.1097/PSY.0000000000000603. PubMed DOI

Holst E. Die relative Koordination: als Phänomen und als Methode zentralnervöser Funktionsanalyse. Ergebnisse der Physiologie und exper. Pharmakologie. 1939;42(1):228–306. doi: 10.1007/BF02322567. DOI

Ernst, J.-P. Dynamik des 0.15-Hz-Rhythmusbandes in der Hautdurchblutung bei Musikexposition (Doctoral Dissertation), Publisher: Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen (2012).

Malpas SC. Neural influences on cardiovascular variability: possibilities and pitfalls. Am. J. Physiol. Heart Circulat. Physiol. 2002;282(1):H6–H20. doi: 10.1152/ajpheart.2002.282.1.H6. PubMed DOI

von Bonin D, et al. Adaption of cardio-respiratory balance during day-rest compared to deep sleep—An indicator for quality of life? Psychiatry Res. 2014;219(3):638–644. doi: 10.1016/j.psychres.2014.06.004. PubMed DOI

Vaitl D, Petermann F. Handbuch der Entspannungsverfahren Vol II, Anwendungen. Beltz-Psychologie Verlagsunion; 1993.

McDuff D, et al. Non-contact imaging of peripheral hemodynamics during cognitive and psychological stressors. Sci. Rep. 2020;10(1):1–13. doi: 10.1038/s41598-020-67647-6. PubMed DOI PMC

Pilz, C. S., Ben Makhlouf, I., Habel, U. & Leonhardt, S. Predicting Brainwaves from Face Videos 282–283 (2020).

Rasche S, et al. Association of remote imaging photoplethysmography and cutaneous perfusion in volunteers. Sci. Rep. 2020;10(1):1–9. doi: 10.1038/s41598-020-73531-0. PubMed DOI PMC

Schäfer A, Vagedes J. How accurate is pulse rate variability as an estimate of heart rate variability? Int. J. Cardiol. 2013;166(1):15–29. doi: 10.1016/j.ijcard.2012.03.119. PubMed DOI

Stauss HM, Anderson EA, Haynes WG, Kregel KC. Frequency response characteristics of sympathetically mediated vasomotor waves in humans. Am. J. Physiol. Heart Circulat. Physiol. 1998;274(4):H1277–H1283. doi: 10.1152/ajpheart.1998.274.4.H1277. PubMed DOI

Nelson KE, Sergueef N, Glonek T. Recording the rate of the cranial rhythmic impulse. J. Am. Osteopath. Assoc. 2006;106(6):337–341. PubMed

Mehling WE, Acree M, Stewart A, Silas J, Jones A. The multidimensional assessment of interoceptive awareness, version 2 (MAIA-2) PLoS ONE. 2018;13(12):e0208034. doi: 10.1371/journal.pone.0208034. PubMed DOI PMC

Spielberger CD. State-Trait Anxiety Inventory for Adults. American Psychological Association; 2012.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...