Compressive transmission scheme for power regulation of embedded 5G communication devices
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39966615
PubMed Central
PMC11836382
DOI
10.1038/s41598-025-89790-8
PII: 10.1038/s41598-025-89790-8
Knihovny.cz E-zdroje
- Klíčová slova
- 5G, Compressed transmission, Embedded devices, Neural network, Power management,
- Publikační typ
- časopisecké články MeSH
Power management for embedded devices in Fifth Generation (5G) networks is mandatory for synchronizing the communication between the devices. In such cases, the need for integration power optimization is recommended aiding lossless and high-speed communications. To suppress the issues in embedded hardware-based power failures during transmissions, this article proposes a Compressive Transmission Scheme (CTS) through Power Regulation (PR). The proposed scheme identifies multiple transmission possibilities under low power and high throughput constraints of 5G in a single interval. The device integrations are decided by the available devices under power-efficient transmission slots. Such allocation slots are defined for integrated transmission using neural-diffracted networks. The learning network defines the objectives for transmission between embedded hardware and the 5G device under low power. This is pursued until the transmission is completed; the adverse energy drain impact is handled by offloading the slots to the active hardware available. This balances the power management to prevent communication loss satisfying the 5G constraints. For the maximum slots/device, the proposed scheme achieves 11.46% high slot allocation, 12.47% low latency, and 9.99% less power consumption.
Applied Science Research Center Applied Science Private University Amman 11931 Jordan
Collage of Information Science andTechnology Zhejiang Shuren University Hangzhou 310015 China
College of Engineering University of Business and Technology 21448 Jeddah Saudi Arabia
ENET Centre VSB Technical University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Chen, L. et al. 5G and energy internet planning for power and communication network expansion. Iscience27(3), 109290 (2024). PubMed PMC
Bao, P., Xu, Q., Yang, Y. & Zhao, X. Cooperative game-based solution for power system dynamic economic dispatch considering uncertainties: A case study of large-scale 5G base stations as virtual power plant. Appl. Energy368, 123463 (2024).
Chen, J. D. & Qian, J. B. A highly linear, low power, highly efficient, CMOS wideband power amplifier for 2–5 GHz wireless communications. Circuits Syst. Signal Process.43(8), 4691–4714 (2024).
Oh, H. et al. A multimode GaN Doherty power amplifier MMIC With N-scalable amplifiers for selective back-off power level. IEEE Trans. Microw. Theory Tech.72, 550 (2023).
Karimi, M. J., Jin, M., Zhou, Y., Dehollain, C. & Schmid, A. Wirelessly powered and bi-directional data communication system with adaptive conversion chain for multisite biomedical implants over single inductive link. IEEE Trans. Biomed. Circuits Syst.18, 636 (2024). PubMed
Xiaocheng, W., Qiaoni, H. & Yuan, Y. Energy-efficient data transmission with proportional rate fairness for NANs of smart grid communication network. EURASIP J. Adv. Signal Process.2023, 43 (2023).
Khanmirza, H. & Maroufi, S. Good flood bed: An energy-efficient and controlled concurrent transmission protocol. Int. J. Wireless Inf. Networks31(2), 109–120 (2024).
Mohammed, A. A. & Abdulwahhab, A. H. Analysis of potential 5G transmission methods concerning Bit Error Rate. AEU-Int. J. Electron. Commun.184, 155407 (2024).
Do, Q. T. et al. Multi-UAV aided energy-aware transmissions in mmWave communication network: Action-branching QMIX network. J. Netw. Comput. Appl.230, 103948 (2024).
Qasim, N. H. & Jawad, A. M. 5G-enabled UAVs for energy-efficient opportunistic networking. Heliyon10, e32660 (2024). PubMed PMC
Dai, Y. et al. Collaborative optimization of distribution network and 5G base stations considering its communication load migration and energy storage dynamic backup flexibility. Int. J. Electr. Power Energy Syst.160, 110124 (2024).
Aljeri, N. & Boukerche, A. NEMa: A novel energy-efficient mobility management protocol for 5G/6G-enabled sustainable vehicular networks. Comput. Netw.252, 110638 (2024).
Yang, H. et al. Energy harvesting UAV-RIS-assisted maritime communications based on deep reinforcement learning against jamming. IEEE Trans. Wirel. Commun.23, 9854 (2024).
Liu, P. et al. Toward ambient intelligence: Federated edge learning with task-oriented sensing, computation, and communication integration. IEEE J. Sel. Top. Signal Process.17(1), 158–172 (2022).
Li, H., Lv, X. & Zhang, S. Multi-objective deep reinforcement learning based joint beamforming and power allocation in UAV assisted cellular communication. Wirel. Pers. Commun.134(2), 809–829 (2024).
Zhou, X. et al. Joint UAV trajectory and communication design with heterogeneous multi-agent reinforcement learning. Sci. China Inf. Sci.67(3), 132302 (2024).
Zhou, C., Shi, S., Wu, C. & Wei, S. Energy efficient UAV-assisted communication with joint resource allocation and trajectory optimization in NOMA-based internet of remote things. Wireless Netw.30(6), 5361–5374 (2024).
Ding, G. et al. Strategy of 5G base station energy storage participating in the power system frequency regulation. Arab. J. Sci. Eng.48(11), 14537–14548 (2023).
Mokri, M. A., Miraslani, S., Hoque, M. A. & Heo, D. A dual-path transformer-based multiband power amplifier for mm-wave 5G applications. IEEE J. Solid-State Circuits.59, 1643 (2024).
Pang, S., Xu, J., Li, H., Ma, Q. & Li, X. Dual-frequency modulation to achieve power independent regulation for dual-load underwater wireless power connector. IEEE J. Emerg Sel. Top. Power Electron.11(2), 2377–2389 (2022).
Wu, G., Fang, Y., Xu, J., Feng, Z. & Cui, S. Energy-efficient MIMO integrated sensing and communications with on-off non-transmission power. IEEE Internet Things J.11, 12177 (2023).
Park, G. H., Kim, J. H. & Park, C. S. Low-power decibel-linear programmable-gain amplifier with complementary current-switching technique. IEEE Trans. Circuits Syst. I Regul. Pap.70(5), 1846–1855 (2023).
Wang, W., Jiang, C., Yang, L., Zhu, H. & Zhou, D. A highly efficient resource slicing and scheduling optimization algorithm for power heterogeneous communication networks based on hypergraph and congruence entropy. EURASIP J. Adv. Signal Process.2024(1), 41 (2024).
Jia, K., Yang, X. & Peng, Z. Design of an integrated network order system for main distribution network considering power dispatch efficiency. Energy Inf.7(1), 69 (2024).
Zeng, B., Zhang, W., Hu, P., Sun, J. & Gong, D. Synergetic renewable generation allocation and 5G base station placement for decarbonizing development of power distribution system: A multi-objective interval evolutionary optimization approach. Appl. Energy351, 121831 (2023).
Salh, A. et al. Energy-efficient federated learning with resource allocation for green IoT edge intelligence in B5G. IEEE Access11, 16353–16367 (2023).
He, H. et al. Impact of communication time delay in a 5G network on frequency regulation performance of a high renewable energy penetrated power system. IEEE Internet Things J.11, 24376 (2023).
Israr, A., Yang, Q. & Israr, A. Renewable microgeneration cooperation with base station sleeping-mode strategy for energy-efficient operation of 5G infrastructures. Sustain. Energy Grids Netw.38, 101358 (2024).
Yang, Z., Chen, M., Zhang, Z. & Huang, C. Energy efficient semantic communication over wireless networks with rate splitting. IEEE J. Sel. Areas Commun.41(5), 1484–1495 (2023).
MEC, N. A. C. T. S. (2023). Energy-efficient optimization of multi-user NOMA-assisted cooperative THz-SIMO MEC systems.
Sabuj, S. R., Asiedu, D. K. P., Lee, K.-J. & Jo, H.-S. Delay optimization in mobile edge computing: Cognitive UAV-assisted eMBB and mMTC services. IEEE Trans. Cogn. Commun. Netw.8(2), 1019–1033 (2022).
Rihan, M., Zappone, A., Buzzi, S., Wübben, D. & Dekorsy, A. Energy efficiency maximization for active RIS-aided integrated sensing and communication. EURASIP J. Wirel. Commun. Netw.2024(1), 20 (2024).
Shen, Y., Chen, Y., Kang, H., Sun, X. & Chen, Q. Energy-efficient indoor hybrid deployment strategy for 5G mobile small-cell base stations using JAFR Algorithm. Pervasive Mob. Comput.100, 101918 (2024).
Guan, X. & Xue, J. Energy-efficient computing offloading based on multi-UAV dispatch via NOMA in emergency communication networks. Wirel. Pers. Commun.133(1), 199–226 (2023).
Cai, C. et al. Energy-efficient two-way full-duplex relay transmission strategy with SWIPT and direct links. EURASIP J. Wirel. Commun. Netw.2024(1), 17 (2024).
Jeon, Y. R., Ryu, J. H. & Lee, I. G. ART: Adaptive relay transmission for highly reliable communications in next-generation wireless LANs. Comput. Netw.254, 110752 (2024).
Sabuj, S. R., Asiedu, D. K. P., Lee, K. J. & Jo, H. S. Delay optimization in mobile edge computing: Cognitive UAV-assisted eMBB and mMTC services. IEEE Trans. Cogn. Commun. Netw.8(2), 1019–1033 (2022).