Periodic Table Exploration of MXenes for Efficient Electrochemical Nitrate Reduction to Ammonia
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018110
CzechNanoLab project at CEITEC Nano Research Infrastructure
MEYS CR
CzechNanoLab project at CEITEC Nano Research Infrastructure
CZ.10.03.01/00/22_003/0000048
REFRESH - Research Excellence For REgion Sustainability and High-tech Industries
90254
e-INFRA CZ
CZ.02.01.01/00/22_008/0004587
TECHSCALE
PubMed
39967469
PubMed Central
PMC11899535
DOI
10.1002/smll.202410105
Knihovny.cz E-zdroje
- Klíčová slova
- 2D materials, catalysis, electrochemistry,
- Publikační typ
- časopisecké články MeSH
Applying electrochemical nitrate reduction reaction (NO3RR) to produce ammonia offers a sustainable alternative to the energy-intensive Haber-Bosch process, which is crucial for clean energy and agricultural applications. While 2D MXenes hold great promise as electrocatalysts for NO3RR, their application for ammonia production remains underexplored. This study combines experimental and theoretical approaches to evaluate the catalytic performance of a series of MXenes with different central metal atoms for NO3RR. Among the materials studied (Ti3C2Tx, Ti3CNTx, Ti2CTx, V2CTx, Cr2CTx, Nb2CTx, and Ta2CTx), Ti3-based MXenes exhibit superior faradaic efficiency, ammonia yield rate, and stability. Density functional theory calculations offer further insights explaining the structure-activity-based observations. This research establishes a foundation for future studies aimed at leveraging MXenes for electrochemical nitrate reduction for green synthesis of ammonia.
Zobrazit více v PubMed
Duca M., Koper M. T. M., Energy Environ. Sci. 2012, 5, 9726.
van Langevelde P. H., Katsounaros I., Koper M. T. M., Joule 2021, 5, 290.
Li L., Tang C., Yao D., Zheng Y., Qiao S. Z., ACS Energy Lett. 2019, 4, 2111.
Jiao F., Xu B., Adv. Mater. 2019, 31, 1805173. PubMed
Lan R., Irvine J. T. S., Tao S., Int. J. Hydrogen Energy 2012, 27, 1482.
Klerke A., Christensen C. H., Nørskov J. K., Vegge T., J. Mater. Chem. 2008, 18, 2304.
Chen J. G., Crooks R. M., Seefeldt L. C., Bren K. L., Morris Bullock R., Darensbourg M. Y., Holland P. L., Hoffman B., Janik M. J., Jones A. K., Kanatzidis M. G., King P., Lancaster K. M., Lymar S. V., Pfromm P., Schneider W. F., Schrock R. R., Science 2018, 360, eaar6611. PubMed PMC
Abascal E., Gómez‐Coma L., Ortiz I., Ortiz A., Sci. Total Environ. 2022, 810, 152233. PubMed
Bhatnagar A., Sillanpää M., Chem. Eng. J. 2011, 168, 493.
Gogotsi Y., Anasori B., ACS Nano 2019, 13, 8491. PubMed
Naguib M., Mashtalir O., Carle J., Presser V., Lu J., Hultman L., Gogotsi Y., Barsoum M. W., ACS Nano 2012, 6, 1322. PubMed
Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M. W., Adv. Mater. 2011, 23, 4248. PubMed
Mohammadi A. V., Rosen J., Gogotsi Y., Science 2021, 372, eabf1581. PubMed
Pang Y., Li J., Lv K., Tang D., Li Q., New J. Chem. 2024, 48, 12477.
Hu T., Wang M., Guo C., Li C. M., J. Mater. Chem. A Mater. 2022, 10, 8923.
Zhao F., Li G., Hua Q., Cao J., Song J., Gao L., Ma T., Ren X., Liu A., Catal. Sci. Technol. 2023, 13, 5543.
Liu L., Zheng S. J., Chen H., Cai J., Zang S. Q., Angew. Chem., Int. Ed. 2024, 63, 202316910. PubMed
Zhao Z., Chen Y., Liu Y., Zhao Y., Zhang Z., Zhang K., Mo Z., Wang C., Gao S., Appl. Surf. Sci. 2023, 614, 156077.
Li L. X., Sun W. J., Zhang H. Y., Wei J. L., Wang S. X., He J. H., Li N. J., Xu Q. F., Chen D. Y., Li H., Lu J. M., J. Mater. Chem. A Mater. 2021, 9, 21771.
Tripathy D. B., R. Soc. Chem. 2024, 8, 3801.
Johnson L. R., Sridhar S., Zhang L., Fredrickson K. D., Raman A. S., Jang J., Leach C., Padmanabhan A., Price C. C., Frey N. C., Raizada A., Rajaraman V., Saiprasad S. A., Tang X., Vojvodic A., ACS Catal. 2020, 10, 253.
Li Z., Wang L., Sun D., Zhang Y., Liu B., Hu Q., Zhou A., Mater. Sci. Eng., B 2015, 191, 33.
Vijayaprabhakaran A., Kathiresan M., Mater. Adv. 2023, 4, 3593.
Liu Y., Jiang Y., Hu Z., Peng J., Lai W., Wu D., Zuo S., Zhang J., Chen B., Dai Z., Yang Y., Huang Y., Zhang W., Zhao W., Zhang W., Wang L., Chou S., Adv. Funct. Mater. 2021, 31, 2008033.
Halim J., Cook K. M., Naguib M., Eklund P., Gogotsi Y., Rosen J., Barsoum M. W., Appl. Surf. Sci. 2016, 362, 406.
Parker T., Zhang D., Bugallo D., Shevchuk K., Downes M., Valurouthu G., Inman A., Chacon B., Zhang T., Shuck C. E., Hu Y.‐J., Gogotsi Y., Chem. Mater. 2024, 36, 8437. PubMed PMC
Chen K., Yan K., Xie Q., Zhu H., Li X., Dong Z., Yuan G., Zhang J., Cong Y., Res. Chem. Intermed. 2022, 48, 4443.
Yang Z., Yang Q., Tian Y., Ren X., Li C., Zu Y., Zaheer Ud Din S., Gao L., Wu J., Chen H., Zhang H., Liu J., He J., Al‐Sehemi A. G., J. Materiomics 2023, 9, 44.
Liu F., Zhou A., Chen J., Zhang H., Cao J., Wang L., Hu Q., Adsorption 2016, 22, 915.
Zhou W., Yu B., Zhu J., Li K., J. Mater. Sci. 2022, 57, 3954.
Jin S., Hu Q., Zhou A., arXiv:2104.12930 2021.
Deng Q., Zhao X., Zhu Q., Bo M., Feng Y., J Electroceram. 2021, 46, 124.
Liu R. J., Yang L. X., Wang Y., Bu H. P., Liu H. J., Zeng C. L., J. Solid State Electrochem. 2022, 26, 831.
Akinola O., Chakraborty I., Celio H., Akinwande D., Incorvia J. A. C., J. Mater. Res. 2021, 36, 1980.
Ma S., Ye J., Liu A., Liu Y., Wang J., Pang J., J. Am. Ceram. Soc. 2016, 99, 1943.
Schmuecker S. M., Clouser D., Kraus T. J., Leonard B. M., Dalton Trans. 2017, 46, 13524. PubMed
Loubière S., Laurent C., Bonino J.‐P., Rousset A., Mater. Res. Bull. 1998, 33, 935.
Arif N., Gul S., Sohail M., Rizwan S., Iqbal M., Ceram. Int. 2021, 47, 2388.
Tiu Z. C., Tan S. J., Yusoff N., Ahmad H., Sci. Rep. 2022, 12, 6766. PubMed PMC
Liu F., Zhou A., Chen J., Jia J., Zhou W., Wang L., Hu Q., Appl. Surf. Sci. 2017, 416, 781.
Sanna M., Novčić K. A., Ng S., Černý M., Pumera M., J. Mater. Chem. A Mater. 2023, 11, 3080.
Wu Z. Y., Karamad M., Yong X., Huang Q., Cullen D. A., Zhu P., Xia C., Xiao Q., Shakouri M., Chen F. Y., Kim J. Y. (Timothy), Xia Y., Heck K., Hu Y., Wong M. S., Li Q., Gates I., Siahrostami S., Wang H., Nat. Commun. 2021, 12, 2870. PubMed PMC
Gao W., Perales‐Rondon J. V., Michalička J., Pumera M., Appl. Catal. B 2023, 330, 122632.
Kresse G., Furthmüller J., Phys. Rev. B. 1996, 54, 11169. PubMed
Kresse G., Furthmüller J., Comput. Mater. Sci. 1996, 6, 15.
Kresse G., Joubert D., Phys. Rev. B. 1999, 59, 1758.
Blochl P. E., Phys. Rev. B. 1994, 50, 17953. PubMed
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865. PubMed
Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys. 2010, 132, 154104. PubMed
Mathew K., Sundararaman R., Letchworth‐Weaver K., Arias T. A., Hennig R. G., J. Chem. Phys. 2014, 140, 084106. PubMed
Mathew K., Sundararaman R., Letchworth‐Weaver K., Arias T. A., Hennig R. G., J. Chem. Phys. 2014, 140, 08410. PubMed
Nørskov J. K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J. R., Bligaard T., Jónsson H., J. Phys. Chem. B 2004, 108, 17886. PubMed
Wang V., Xu N., Liu J. C., Tang G., Geng W. T., Comput. Phys. Commun. 2021, 267, 108033.
Liu J. X., Richards D., Singh N., Goldsmith B. R., ACS Catal. 2019, 9, 7052.
Gao X., Tse E. C. M., Small 2024, 20, 2306311. PubMed
Li L., Wang X., Guo H., Yao G., Yu H., Tian Z., Li B., Chen L., Small Methods 2019, 3, 1900337.