A polyphasic method for the characterization of epiphytic diatoms growing on Gelidium corneum

. 2025 Jun ; 14 () : 103188. [epub] 20250128

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39967720
Odkazy

PubMed 39967720
PubMed Central PMC11834132
DOI 10.1016/j.mex.2025.103188
PII: S2215-0161(25)00036-6
Knihovny.cz E-zdroje

Epiphytic diatoms associated with marine macroalgae play vital ecological roles in nutrient cycling and primary production, yet their study remains limited due to the lack of standardized methodologies. This study focuses on diatom communities growing on Gelidium corneum, a key red alga in the Cantabrian coast (Spain). Samples were collected from two depths along the northern coast of Spain and processed using both morphological and molecular approaches. Morphological analysis involved diatom frustule preparation using hydrogen peroxide digestion, acid treatments, and permanent slide mounting, enabling identification through light microscopy. Molecular analysis employed DNA extraction and rbcL marker-based metabarcoding, allowing detailed taxonomic characterization. Results highlight the efficacy of combining morphological and molecular techniques to overcome the limitations of either approach individually. By standardizing procedures, we enhance the reproducibility and comparability of studies focused on diatom epiphytes. Our results highlight the ecological significance of diatom-macroalgal interactions and provide a framework for future investigations into these essential but underexplored communities.•A polyphasic method was developed for studying epiphytic diatoms on Gelidium corneum, combining morphological and molecular tools.•The approach overcomes challenges in diatom characterization, including intricate host morphology and cryptic species identification.•Standardized protocols enhance reproducibility and offer insights into diatom-macroalgal ecological interactions.

Zobrazit více v PubMed

Das S., Lyla P.S., Ajmal Khan S. Marine microbial diversity and ecology: importance and future perspectives. Curr. Sci. 2006;90(10):1325–1335.

Worden A.Z., Follows M.J., Giovannoni S.J., Wilken S., Zimmerman A.E., Keeling P.J. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science (1979) 2015;347(6223) doi: 10.1126/science.1257594. American Association for the Advancement of Science. PubMed DOI

Zehr J.P., Kudela R.M. Nitrogen cycle of the open ocean: from genes to ecosystems. Ann. Rev. Mar. Sci. 2011;3:197–225. doi: 10.1146/annurev-marine-120709-142819. PubMed DOI

Round F.E., Crawford R.M., Mann D.G. Cambridge University Press; 1990. Diatoms: Biology and Morphology of the Genera.

Chisholm J.R.M., Dauga C., Ageron E., Grimont P.A.D., Jaubert J.M. Roots” in mixotrophic algae. Nature. 1996;381(6581):382. doi: 10.1038/381382a0. DOI

Lema K.A., Willis B.L., Bourneb D.G. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl. Environ. Microbiol. 2012;78(9):3136–3144. doi: 10.1128/AEM.07800-11. PubMed DOI PMC

Li M., Wang K., Jia C., Liu T., Yang S., Ou H., Zhao J. Bacteroidetes bacteria, important players in the marine sponge larval development process. iScience. 2021;24(6) doi: 10.1016/j.isci.2021.102662. PubMed DOI PMC

Holmstrom C., Rittschof D., Kjelleberg S. Inhibition of settlement by larvae of balanus amphitrite and ciona intestinalis by a surface-colonizing marine bacterium. Appl. Environ. Microbiol. 1992;58(7) https://journals.asm.org/journal/aem PubMed PMC

Lee Y.-K., Lee J.-H., Lee H.-K. Microbial symbiosis in marine sponges. J. Microbiol. 2001;39(4)

Kamke J., Sczyrba A., Ivanova N., Schwientek P., Rinke C., Mavromatis K., Woyke T., Hentschel U. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J. 2013;7(12):2287–2300. doi: 10.1038/ismej.2013.111. PubMed DOI PMC

Rowan R. Diversity and ecology of zooxanthellae on coral reefs. J. Phycol. 1998;34(3):407–417. doi: 10.1046/j.1529-8817.1998.340407.x. Blackwell Publishing Inc. DOI

Slaby B.M., Hackl T., Horn H., Bayer K., Hentschel U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME Journal. 2017;11(11):2465–2478. doi: 10.1038/ismej.2017.101. PubMed DOI PMC

Harley C.D.G., Anderson K.M., Demes K.W., Jorve J.P., Kordas R.L., Coyle T.A., Graham M.H. Efects of climate change on global seaweed communities. J. Phycol. 2012;48(5):1064–1078. doi: 10.1111/j.1529-8817.2012.01224.x. PubMed DOI

Strain E.M.A., Thomson R.J., Micheli F., Mancuso F.P., Airoldi L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Chang. Biol. 2014;20(11):3300–3312. doi: 10.1111/gcb.12619. PubMed DOI

Steinberg P.D., De Nys R. Chemical mediation of colonization of seaweed surfaces. J. Phycol. 2002;38(4):621–629. doi: 10.1046/j.1529-8817.2002.02042.x. DOI

Florez J.Z., Camus C., Hengst M.B., Buschmann A.H. A mesocosm study on bacteria-kelp interactions: importance of nitrogen availability and kelp genetics. J. Phycol. 2021;57(6):1777–1791. doi: 10.1111/jpy.13213. PubMed DOI

Helliwell K.E., Wheeler G.L., Leptos K.C., Goldstein R.E., Smith A.G. Insights into the evolution of vitamin B 12 auxotrophy from sequenced algal genomes. Mol. Biol. Evol. 2011;28(10):2921–2933. doi: 10.1093/molbev/msr124. PubMed DOI

W.E. Booth, (1987). Contribution by diatoms to marine algal host-epiphyte photosynthesis. 30(2), 129–140. 10.1515/botm.1987.30.2.129 DOI

Majewska R., Kuklinski P., Balazy P., Yokoya N.S., Paternostro Martins A., De Stefano M. A comparison of epiphytic diatom communities on Plocamium cartilagineum (Plocamiales, Florideophyceae) from two Antarctic areas. Polar Biol. 2015;38(2):189–205. doi: 10.1007/s00300-014-1578-7. DOI

Frankovich T.A., Gaiser E.E., Zieman J.C., Wachnicka A.H. Spatial and temporal distributions of epiphytic diatoms growing on Thalassia testudinum Banks ex König: relationships to water quality. Hydrobiologia. 2006;569(1):259–271. doi: 10.1007/s10750-006-0136-x. DOI

Lebreton B., Richard P., Radenac G., Bordes M., Bréret M., Arnaud C., Mornet F., Blanchard G.F. Are epiphytes a significant component of intertidal Zostera noltii beds? Aquat. Bot. 2009;91(2):82–90. doi: 10.1016/j.aquabot.2009.03.003. DOI

Moncreiff C.A., Sullivan M.J. Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses. Mar. Ecol. Prog. Ser. 2001;215:93–106. doi: 10.3354/meps215093. DOI

Costa M.M.D.S., Pereira S.M.B., Silva-Cunha Da, G M.D.G., De Arruda P.C., Eskinazi-Leça E. Community structure of epiphytic diatoms on seaweeds in Northeastern Brazil. Botanica Marina. 2016;59(4):231–240. doi: 10.1515/bot-2015-0014. DOI

Majewska R., Gambi M.C., Totti C.M., Pennesi C., De Stefano M. Growth form analysis of epiphytic diatom communities of Terra Nova Bay (Ross Sea, Antarctica) Polar Biol. 2013;36(1):73–86. doi: 10.1007/s00300-012-1240-1. DOI

Totti C., Poulin M., Romagnoli T., Perrone C., Pennesi C., de Stefano M. Epiphytic diatom communities on intertidal seaweeds from Iceland. Polar Biol. 2009;32(11):1681–1691. doi: 10.1007/s00300-009-0668-4. DOI

Mayombo N.A.S., Majewska R., Smit A.J. An assessment of the influence of host species, age, and thallus part on kelp-associated diatoms. Diversity. (Basel) 2020;12(10) doi: 10.3390/d12100385. DOI

Mayombo N., Majewska R., Smit A. Diatoms associated with two South African kelp species: ecklonia maxima and Laminaria pallida. Afr. J. Mar. Sci. 2019;41(2):221–229. doi: 10.2989/1814232X.2019.1592778. DOI

Fernández C. Biological and economic importance of the genus Gelidium in Spain. Sci. Mar. 1991;163:3–20.

Juanes J.A., Borja A. Biological criteria for the exploitation of the commercially important species of Gelidium in Spain. Hydrobiologia. 1991;221(1):45–54. doi: 10.1007/BF00028361. DOI

Bustamante M., Tajadura J., Díez I., Saiz-Salinas J.I. The potential role of habitat-forming seaweeds in modeling benthic ecosystem properties. J. Sea Res. 2017;130:123–133. doi: 10.1016/j.seares.2017.02.004. DOI

Quintano E., Díez I., Muguerza N., Santolaria A., Gorostiaga J.M. Epiphytic flora on Gelidium corneum (Rhodophyta: gelidiales) in relation to wave exposure and depth. Sci. Mar. 2015;79(4):479–486. doi: 10.3989/SCIMAR.04239.08B. DOI

Borja Á., Aguirrezabalaga F., Martínez J., Sola J.C., García-Arberas L., Gorostiaga J.M. Vol. 70. Elsevier; 2004. Benthic communities, biogeography and resources management; pp. 455–492. (Elsevier Oceanography Series). DOI

Bustamante M., Tajadura J., Gorostiaga J.M., Saiz-Salinas J.I. Response of rocky invertebrate diversity, structure and function to the vertical layering of vegetation. Estuar. Coast. Shelf. Sci. 2014;147:148–155. doi: 10.1016/j.ecss.2014.06.001. DOI

Santos R. Frond dynamics of the commercial seaweed Gelidium sesquipedale: effects of size and of frond history. Mar. Ecol. Prog. Ser. 1994;107:295–305.

Stanca E., Parsons M.L. Examining the dynamic nature of epiphytic microalgae in the Florida Keys: what factors influence community composition? J. Exp. Mar. Biol. Ecol. 2021;538 doi: 10.1016/J.JEMBE.2021.151538. PubMed DOI PMC

Flor G., Flor-Blanco G. An introduction to the erosion and sedimentation problems in the coastal regions of asturias and cantabria (NW Spain) and its implications on environmental management. J. Coast. Res. 2005:58–63. https://www.jstor.org/stable/25737405

de la Hoz C.F., Ramos E., Acevedo A., Puente A., Losada Í.J., Juanes J.A. OCLE: a European open access database on climate change effects on littoral and oceanic ecosystems. Prog. Oceanogr. 2018;168:222–231. doi: 10.1016/j.pocean.2018.09.021. DOI

Borrego-Ramos M., Olenici A., Blanco S. Are dead stems suitable substrata for diatom-based monitoring in Mediterranean shallow ponds? Fundam. Appl. Limnol. 2019;192:215–224. doi: 10.1127/fal/2019/1163. DOI

Riato L., Leira M., Della Bella V., Oberholster P.J. Development of a diatom-based multimetric index for acid mine drainage impacted depressional wetlands. Sci. Total Environ. 2018;612:214–222. doi: 10.1016/j.scitotenv.2017.08.181. PubMed DOI

Zimba P.V., Hopson M.S. Quantification of epiphyte removal efficiency from submersed aquatic plants. Aquat. Bot. 1997;58(2):173–179. doi: 10.1016/S0304-3770(97)00002-8. DOI

European Committee for Standardization . 2014. In Water quality. Guidance standard For the Routine Sampling and Pretreatment of Benthic Diatoms from Rivers; p. 22.

Rivera S.F., Vasselon V., Jacquet S., Bouchez A., Ariztegui D., Rimet F. Metabarcoding of lake benthic diatoms: from structure assemblages to ecological assessment. Hydrobiologia. 2018;807:37–51. doi: 10.1007/s10750-017-3381-2. DOI

Vasselon V., Bouchez A., Rimet F., Jacquet S., Trobajo R., Corniquel M., Tapolczai K., Domaizon I. Avoiding quantification bias in metabarcoding: application of a cell biovolume correction factor in diatom molecular biomonitoring. Methods Ecol. Evol. 2018;9(4):1060–1069.

Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC

Keck F. 2020. Diatbarcode: Access the diat. Barcode database. R package Version 0.0. 0.9000.

Rimet F., Chaumeil P., Keck F., Kermarrec L., Vasselon V., Kahlert M., Franc A., Bouchez A. R-Syst:: diatom: an open-access and curated barcode database for diatoms and freshwater monitoring. Database. 2016;2016 doi: 10.1093/database/baw016. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...