A polyphasic method for the characterization of epiphytic diatoms growing on Gelidium corneum
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39967720
PubMed Central
PMC11834132
DOI
10.1016/j.mex.2025.103188
PII: S2215-0161(25)00036-6
Knihovny.cz E-zdroje
- Klíčová slova
- A polyphasic method for the characterization of epiphytic diatoms growing on Gelidium corneum, Bacillariophyta, Bentos, Epiphytism, Macroalgae, Metabarcoding, Protocol, RBCL marker,
- Publikační typ
- časopisecké články MeSH
Epiphytic diatoms associated with marine macroalgae play vital ecological roles in nutrient cycling and primary production, yet their study remains limited due to the lack of standardized methodologies. This study focuses on diatom communities growing on Gelidium corneum, a key red alga in the Cantabrian coast (Spain). Samples were collected from two depths along the northern coast of Spain and processed using both morphological and molecular approaches. Morphological analysis involved diatom frustule preparation using hydrogen peroxide digestion, acid treatments, and permanent slide mounting, enabling identification through light microscopy. Molecular analysis employed DNA extraction and rbcL marker-based metabarcoding, allowing detailed taxonomic characterization. Results highlight the efficacy of combining morphological and molecular techniques to overcome the limitations of either approach individually. By standardizing procedures, we enhance the reproducibility and comparability of studies focused on diatom epiphytes. Our results highlight the ecological significance of diatom-macroalgal interactions and provide a framework for future investigations into these essential but underexplored communities.•A polyphasic method was developed for studying epiphytic diatoms on Gelidium corneum, combining morphological and molecular tools.•The approach overcomes challenges in diatom characterization, including intricate host morphology and cryptic species identification.•Standardized protocols enhance reproducibility and offer insights into diatom-macroalgal ecological interactions.
Diatom Lab IMA La Serna St León Spain
IHCantabria Instituto de Hidráulica Ambiental de la Universidad de Cantabria Santander Spain
Zobrazit více v PubMed
Das S., Lyla P.S., Ajmal Khan S. Marine microbial diversity and ecology: importance and future perspectives. Curr. Sci. 2006;90(10):1325–1335.
Worden A.Z., Follows M.J., Giovannoni S.J., Wilken S., Zimmerman A.E., Keeling P.J. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science (1979) 2015;347(6223) doi: 10.1126/science.1257594. American Association for the Advancement of Science. PubMed DOI
Zehr J.P., Kudela R.M. Nitrogen cycle of the open ocean: from genes to ecosystems. Ann. Rev. Mar. Sci. 2011;3:197–225. doi: 10.1146/annurev-marine-120709-142819. PubMed DOI
Round F.E., Crawford R.M., Mann D.G. Cambridge University Press; 1990. Diatoms: Biology and Morphology of the Genera.
Chisholm J.R.M., Dauga C., Ageron E., Grimont P.A.D., Jaubert J.M. Roots” in mixotrophic algae. Nature. 1996;381(6581):382. doi: 10.1038/381382a0. DOI
Lema K.A., Willis B.L., Bourneb D.G. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl. Environ. Microbiol. 2012;78(9):3136–3144. doi: 10.1128/AEM.07800-11. PubMed DOI PMC
Li M., Wang K., Jia C., Liu T., Yang S., Ou H., Zhao J. Bacteroidetes bacteria, important players in the marine sponge larval development process. iScience. 2021;24(6) doi: 10.1016/j.isci.2021.102662. PubMed DOI PMC
Holmstrom C., Rittschof D., Kjelleberg S. Inhibition of settlement by larvae of balanus amphitrite and ciona intestinalis by a surface-colonizing marine bacterium. Appl. Environ. Microbiol. 1992;58(7) https://journals.asm.org/journal/aem PubMed PMC
Lee Y.-K., Lee J.-H., Lee H.-K. Microbial symbiosis in marine sponges. J. Microbiol. 2001;39(4)
Kamke J., Sczyrba A., Ivanova N., Schwientek P., Rinke C., Mavromatis K., Woyke T., Hentschel U. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges. ISME J. 2013;7(12):2287–2300. doi: 10.1038/ismej.2013.111. PubMed DOI PMC
Rowan R. Diversity and ecology of zooxanthellae on coral reefs. J. Phycol. 1998;34(3):407–417. doi: 10.1046/j.1529-8817.1998.340407.x. Blackwell Publishing Inc. DOI
Slaby B.M., Hackl T., Horn H., Bayer K., Hentschel U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME Journal. 2017;11(11):2465–2478. doi: 10.1038/ismej.2017.101. PubMed DOI PMC
Harley C.D.G., Anderson K.M., Demes K.W., Jorve J.P., Kordas R.L., Coyle T.A., Graham M.H. Efects of climate change on global seaweed communities. J. Phycol. 2012;48(5):1064–1078. doi: 10.1111/j.1529-8817.2012.01224.x. PubMed DOI
Strain E.M.A., Thomson R.J., Micheli F., Mancuso F.P., Airoldi L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Chang. Biol. 2014;20(11):3300–3312. doi: 10.1111/gcb.12619. PubMed DOI
Steinberg P.D., De Nys R. Chemical mediation of colonization of seaweed surfaces. J. Phycol. 2002;38(4):621–629. doi: 10.1046/j.1529-8817.2002.02042.x. DOI
Florez J.Z., Camus C., Hengst M.B., Buschmann A.H. A mesocosm study on bacteria-kelp interactions: importance of nitrogen availability and kelp genetics. J. Phycol. 2021;57(6):1777–1791. doi: 10.1111/jpy.13213. PubMed DOI
Helliwell K.E., Wheeler G.L., Leptos K.C., Goldstein R.E., Smith A.G. Insights into the evolution of vitamin B 12 auxotrophy from sequenced algal genomes. Mol. Biol. Evol. 2011;28(10):2921–2933. doi: 10.1093/molbev/msr124. PubMed DOI
W.E. Booth, (1987). Contribution by diatoms to marine algal host-epiphyte photosynthesis. 30(2), 129–140. 10.1515/botm.1987.30.2.129 DOI
Majewska R., Kuklinski P., Balazy P., Yokoya N.S., Paternostro Martins A., De Stefano M. A comparison of epiphytic diatom communities on Plocamium cartilagineum (Plocamiales, Florideophyceae) from two Antarctic areas. Polar Biol. 2015;38(2):189–205. doi: 10.1007/s00300-014-1578-7. DOI
Frankovich T.A., Gaiser E.E., Zieman J.C., Wachnicka A.H. Spatial and temporal distributions of epiphytic diatoms growing on Thalassia testudinum Banks ex König: relationships to water quality. Hydrobiologia. 2006;569(1):259–271. doi: 10.1007/s10750-006-0136-x. DOI
Lebreton B., Richard P., Radenac G., Bordes M., Bréret M., Arnaud C., Mornet F., Blanchard G.F. Are epiphytes a significant component of intertidal Zostera noltii beds? Aquat. Bot. 2009;91(2):82–90. doi: 10.1016/j.aquabot.2009.03.003. DOI
Moncreiff C.A., Sullivan M.J. Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses. Mar. Ecol. Prog. Ser. 2001;215:93–106. doi: 10.3354/meps215093. DOI
Costa M.M.D.S., Pereira S.M.B., Silva-Cunha Da, G M.D.G., De Arruda P.C., Eskinazi-Leça E. Community structure of epiphytic diatoms on seaweeds in Northeastern Brazil. Botanica Marina. 2016;59(4):231–240. doi: 10.1515/bot-2015-0014. DOI
Majewska R., Gambi M.C., Totti C.M., Pennesi C., De Stefano M. Growth form analysis of epiphytic diatom communities of Terra Nova Bay (Ross Sea, Antarctica) Polar Biol. 2013;36(1):73–86. doi: 10.1007/s00300-012-1240-1. DOI
Totti C., Poulin M., Romagnoli T., Perrone C., Pennesi C., de Stefano M. Epiphytic diatom communities on intertidal seaweeds from Iceland. Polar Biol. 2009;32(11):1681–1691. doi: 10.1007/s00300-009-0668-4. DOI
Mayombo N.A.S., Majewska R., Smit A.J. An assessment of the influence of host species, age, and thallus part on kelp-associated diatoms. Diversity. (Basel) 2020;12(10) doi: 10.3390/d12100385. DOI
Mayombo N., Majewska R., Smit A. Diatoms associated with two South African kelp species: ecklonia maxima and Laminaria pallida. Afr. J. Mar. Sci. 2019;41(2):221–229. doi: 10.2989/1814232X.2019.1592778. DOI
Fernández C. Biological and economic importance of the genus Gelidium in Spain. Sci. Mar. 1991;163:3–20.
Juanes J.A., Borja A. Biological criteria for the exploitation of the commercially important species of Gelidium in Spain. Hydrobiologia. 1991;221(1):45–54. doi: 10.1007/BF00028361. DOI
Bustamante M., Tajadura J., Díez I., Saiz-Salinas J.I. The potential role of habitat-forming seaweeds in modeling benthic ecosystem properties. J. Sea Res. 2017;130:123–133. doi: 10.1016/j.seares.2017.02.004. DOI
Quintano E., Díez I., Muguerza N., Santolaria A., Gorostiaga J.M. Epiphytic flora on Gelidium corneum (Rhodophyta: gelidiales) in relation to wave exposure and depth. Sci. Mar. 2015;79(4):479–486. doi: 10.3989/SCIMAR.04239.08B. DOI
Borja Á., Aguirrezabalaga F., Martínez J., Sola J.C., García-Arberas L., Gorostiaga J.M. Vol. 70. Elsevier; 2004. Benthic communities, biogeography and resources management; pp. 455–492. (Elsevier Oceanography Series). DOI
Bustamante M., Tajadura J., Gorostiaga J.M., Saiz-Salinas J.I. Response of rocky invertebrate diversity, structure and function to the vertical layering of vegetation. Estuar. Coast. Shelf. Sci. 2014;147:148–155. doi: 10.1016/j.ecss.2014.06.001. DOI
Santos R. Frond dynamics of the commercial seaweed Gelidium sesquipedale: effects of size and of frond history. Mar. Ecol. Prog. Ser. 1994;107:295–305.
Stanca E., Parsons M.L. Examining the dynamic nature of epiphytic microalgae in the Florida Keys: what factors influence community composition? J. Exp. Mar. Biol. Ecol. 2021;538 doi: 10.1016/J.JEMBE.2021.151538. PubMed DOI PMC
Flor G., Flor-Blanco G. An introduction to the erosion and sedimentation problems in the coastal regions of asturias and cantabria (NW Spain) and its implications on environmental management. J. Coast. Res. 2005:58–63. https://www.jstor.org/stable/25737405
de la Hoz C.F., Ramos E., Acevedo A., Puente A., Losada Í.J., Juanes J.A. OCLE: a European open access database on climate change effects on littoral and oceanic ecosystems. Prog. Oceanogr. 2018;168:222–231. doi: 10.1016/j.pocean.2018.09.021. DOI
Borrego-Ramos M., Olenici A., Blanco S. Are dead stems suitable substrata for diatom-based monitoring in Mediterranean shallow ponds? Fundam. Appl. Limnol. 2019;192:215–224. doi: 10.1127/fal/2019/1163. DOI
Riato L., Leira M., Della Bella V., Oberholster P.J. Development of a diatom-based multimetric index for acid mine drainage impacted depressional wetlands. Sci. Total Environ. 2018;612:214–222. doi: 10.1016/j.scitotenv.2017.08.181. PubMed DOI
Zimba P.V., Hopson M.S. Quantification of epiphyte removal efficiency from submersed aquatic plants. Aquat. Bot. 1997;58(2):173–179. doi: 10.1016/S0304-3770(97)00002-8. DOI
European Committee for Standardization . 2014. In Water quality. Guidance standard For the Routine Sampling and Pretreatment of Benthic Diatoms from Rivers; p. 22.
Rivera S.F., Vasselon V., Jacquet S., Bouchez A., Ariztegui D., Rimet F. Metabarcoding of lake benthic diatoms: from structure assemblages to ecological assessment. Hydrobiologia. 2018;807:37–51. doi: 10.1007/s10750-017-3381-2. DOI
Vasselon V., Bouchez A., Rimet F., Jacquet S., Trobajo R., Corniquel M., Tapolczai K., Domaizon I. Avoiding quantification bias in metabarcoding: application of a cell biovolume correction factor in diatom molecular biomonitoring. Methods Ecol. Evol. 2018;9(4):1060–1069.
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Keck F. 2020. Diatbarcode: Access the diat. Barcode database. R package Version 0.0. 0.9000.
Rimet F., Chaumeil P., Keck F., Kermarrec L., Vasselon V., Kahlert M., Franc A., Bouchez A. R-Syst:: diatom: an open-access and curated barcode database for diatoms and freshwater monitoring. Database. 2016;2016 doi: 10.1093/database/baw016. PubMed DOI PMC