Activating inert non-defect sites in Bi catalysts using tensile strain engineering for highly active CO2 electroreduction

. 2025 Feb 24 ; 16 (1) : 1927. [epub] 20250224

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39994189
Odkazy

PubMed 39994189
PubMed Central PMC11850590
DOI 10.1038/s41467-025-56975-8
PII: 10.1038/s41467-025-56975-8
Knihovny.cz E-zdroje

Bi-defect sites are highly effective for CO2 reduction (CO2RR) to formic acid, yet most catalytic surfaces predominantly feature inert, non-defective Bi sites. To overcome this limitation, herein, tensile strain is introduced on wholescale non-defective Bi sites. Under rapid thermal shock, the Bi-based metal-organic framework (Bi-MOF-TS) shows weakened Bi-O bonds and produced tiny Bi clusters. During electrochemical reduction, these clusters create numerous continuous vacancies, inducing weak tensile strain over a large range of surrounding non-defective Bi sites. This strain enhances *OHCO intermediates adsorption and substantially lowers the reaction barrier. As a result, Bi-MOF-TS achieves a faradaic efficiency above 90% across 800 mV potential range, with an impressive formate partial current density of -995 ± 93 mA cm-2. Notably, Bi-MOF-TS exhibits a high HCOOH faradaic efficiency of 96 ± 0.64% at 400 mA cm-2 in acidic electrolyte and a high single-pass carbon conversion efficiency (SPCE) of 62.0%. Additionally, a Zn-CO2 battery with Bi-MOF-TS as the cathode demonstrates a peak power density of 21.4 mW cm-2 and maintains stability over 300 cycles.

Zobrazit více v PubMed

De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science364, eaav3506 (2019). PubMed

Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule2, 825–832 (2018).

Wang, G. et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem. Soc. Rev.50, 4993–5061 (2021). PubMed

Zhang, Z., Zhu, J., Chen, S., Sun, W. & Wang, D. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem. Int. Edit.62, e202215136 (2023). PubMed

Quan, Y., Zhu, J. & Zheng, G. Electrocatalytic reactions for converting CO2 to value‐added products. Small Sci.1, 2100043 (2021).

Li, G. et al. Direct plasma phosphorization of Cu foam for Li ion batteries. J. Mater. Chem. A8, 16920–16925 (2020).

Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy4, 732–745 (2019).

Chen, C., Kotyk, J. F. K. & Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem4, 2571–2586 (2018).

Zhu, J. et al. Advances and challenges in single-site catalysts towards electrochemical CO2 methanation. Energy Environ. Sci.16, 4812–4833 (2023).

Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci.11, 893–903 (2018).

Jin, S., Hao, Z., Zhang, K., Yan, Z. & Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew. Chem. Int. Edit.133, 20795–20816 (2021). PubMed

Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z. & Wei, L. N-bridged Co-N-Ni: new bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci.14, 3019–3028 (2021).

Hu, Q. et al. Facile synthesis of sub‐nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane. Angew. Chem. Int. Edit.59, 19054–19059 (2020). PubMed

Zhao, J. et al. Modulation of *CHxO adsorption to facilitate electrocatalytic reduction of CO2 to CH4 over Cu-based catalysts. J. Am. Chem. Soc.145, 6622–6627 (2023). PubMed

Chen, S. et al. Engineering water molecules activation center on multisite electrocatalysts for enhanced CO2 methanation. J. Am. Chem. Soc.144, 12807–12815 (2022). PubMed

Jiang, Z. et al. Discovery of main group single Sb–N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci.13, 2856–2863 (2020).

Wu, Z. et al. Engineering bismuth–tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew. Chem. Int. Edit.133, 12662–12667 (2021). PubMed

Zheng, T. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol.16, 1386–1393 (2021). PubMed

Zheng, X. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule1, 794–805 (2017).

Shen, H. et al. Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide. Nat. Commun.14, 2843 (2023). PubMed PMC

Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature577, 509–513 (2020). PubMed

Ma, Y. et al. Confined growth of silver–copper janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater.34, 2110607 (2022). PubMed

Zhang, W. et al. A typical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction. J. Am. Chem. Soc.142, 11417–11427 (2020). PubMed

Xia, W. et al. Adjacent copper single atoms promote C–C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. J. Am. Chem. Soc.145, 17253–17264 (2023). PubMed

Zhu, J. et al. Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nat. Commun.14, 4670 (2023). PubMed PMC

Wang, W. et al. Carburized In2O3 nanorods endow CO2 electroreduction to formate at 1 A cm–2. ACS Catal.13, 796–802 (2022).

Lamagni, P. et al. Restructuring metal–organic frameworks to nanoscale bismuth electrocatalysts for highly active and selective CO2 reduction to formate. Adv. Funct. Mater.30, 1910408 (2020).

Zhang, E. et al. Bismuth single atoms resulting from transformation of metal–organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc.141, 16569–16573 (2019). PubMed

Cao, C. et al. Metal–organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. Int. Edit.59, 15014–15020 (2020). PubMed

Deng, P. et al. Bismuth oxides with enhanced bismuth–oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal.10, 743–750 (2019).

Gilbert, B., Huang, F., Zhang, H., Waychunas, G. A. & Banfield, J. F. Nanoparticles: strained and stiff. Science305, 651–654 (2004). PubMed

Liu, H. et al. Observation on microenvironment changes of dynamic catalysts in acidic CO2 reduction. J. Am. Chem. Soc.146, 5333–5342 (2024). PubMed

Lhostis, F. et al. Promoting selective CO2 electroreduction to formic acid in acidic medium with low potassium concentrations under high CO2 pressure. Chem. Electro. Chem.11, e202300799 (2024).

Luo, M. & Guo, S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater.2, 1–13 (2017).

Potapenko, D. V., Li, Z., Kysar, J. W. & Osgood, R. M. Nanoscale strain engineering on the surface of a bulk TiO2 crystal. Nano Lett.14, 6185–6189 (2014). PubMed

Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2. Nano Lett.13, 5361–5366 (2013). PubMed

Du, M., Cui, L., Cao, Y., & Bard, AJ. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate. J. Am. Chem. Soc.137, 7397–7403 (2015). PubMed

Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science354, 1031–1036 (2016). PubMed

Li, Y. et al. Enhancing local CO2 adsorption by L‐histidine incorporation for selective formate production over the wide potential window. Angew. Chem. Int. Edit. 62, e202313522 (2023). PubMed

Li, F. et al. Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Appl. Catal. B Environ.277, 119241 (2020).

Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science372, 1074–1078 (2021). PubMed

Hao, Y.-C. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal.2, 448–456 (2019).

Duan, J. et al. Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nat. Commun.13, 2039 (2022). PubMed PMC

Tang, S.-F. et al. Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate. Sci. Bull.66, 1533–1541 (2021). PubMed

Chen, M. et al. In-situ/operando Raman techniques for in-depth understanding on electrocatalysis. Chem. Eng. J.461, 141939 (2023).

Zhang, W. et al. Dynamic restructuring of coordinatively unsaturated copper paddle wheel clusters to boost electrochemical CO2 reduction to hydrocarbons. Angew. Chem. Int. Edit.61, e202112116 (2022). PubMed

Yao, D. et al. The controllable reconstruction of Bi‐MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem. Int. Edit.133, 18326–18332 (2021). PubMed

Xia, Z. & Guo, S. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev.48, 3265–3278 (2019). PubMed

Fan, L. et al. Biaxially compressive strain in Ni/Ru core/shell nanoplates boosts Li–CO2 batteries. Adv. Mater.34, 2204134 (2022). PubMed

Luo, M. et al. PdMo bimetallene for oxygen reduction catalysis. Nature574, 81–85 (2019). PubMed

Zhong, H. et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun.11, 1409 (2020). PubMed PMC

Zhu, J. et al. Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc.144, 15529–15538 (2022). PubMed

Firet, N. J. & Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal.7, 606–612 (2017).

Zhu, S., Jiang, B., Cai, W.-B. & Shao, M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc.139, 15664–15667 (2017). PubMed

Morlanes, N., Takanabe, K. & Rodionov, V. Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal.6, 3092–3095 (2016).

Hu, X.-M. et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal.8, 6255–6264 (2018).

Fan, K. et al. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal.10, 358–364 (2019).

Wang, T. et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high‐efficient CO2 electroreduction and high‐performance Zn–CO2 batteries. Adv. Mater.32, 2002430 (2020). PubMed

Yan, S. et al. Electron localization and lattice strain induced by surface lithium doping enable ampere‐level electrosynthesis of formate from CO2. Angew. Chem. Int. Edit.133, 25945–25949 (2021). PubMed

Xie, J. et al. Reversible aqueous Zinc–CO2 batteries based on CO2–HCOOH interconversion. Angew. Chem. Int. Edit.57, 16996–17001 (2018). PubMed

Zeng, Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun.12, 4088 (2021). PubMed PMC

Li, Z. et al. Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate. Adv. Mater.33, 2005113 (2021). PubMed

Ozden, A. et al. High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer. ACS Energy Lett.5, 2811–2818 (2020).

Lees, E. W., Mowbray, B. A. W., Parlane, F. G. L. & Berlinguette, C. P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater.7, 55–64 (2022).

Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain.5, 563–573 (2022).

Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal.5, 388–396 (2022).

Kim, J. Y. T. et al. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat. Catal.5, 288–299 (2022).

Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B49, 14251 (1994). PubMed

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B54, 11169 (1996). PubMed

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.77, 3865 (1996). PubMed

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B50, 17953 (1994). PubMed

Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 15 (2010). PubMed

Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B13, 5188 (1976).

Chen, X. Activating inert non-defect sites in Bi catalysts using tensile strain engineering for highly active CO2 electroreduction. figshare 10.6084/m9.figshare.28148366 (2025). PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...