Activating inert non-defect sites in Bi catalysts using tensile strain engineering for highly active CO2 electroreduction
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39994189
PubMed Central
PMC11850590
DOI
10.1038/s41467-025-56975-8
PII: 10.1038/s41467-025-56975-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Bi-defect sites are highly effective for CO2 reduction (CO2RR) to formic acid, yet most catalytic surfaces predominantly feature inert, non-defective Bi sites. To overcome this limitation, herein, tensile strain is introduced on wholescale non-defective Bi sites. Under rapid thermal shock, the Bi-based metal-organic framework (Bi-MOF-TS) shows weakened Bi-O bonds and produced tiny Bi clusters. During electrochemical reduction, these clusters create numerous continuous vacancies, inducing weak tensile strain over a large range of surrounding non-defective Bi sites. This strain enhances *OHCO intermediates adsorption and substantially lowers the reaction barrier. As a result, Bi-MOF-TS achieves a faradaic efficiency above 90% across 800 mV potential range, with an impressive formate partial current density of -995 ± 93 mA cm-2. Notably, Bi-MOF-TS exhibits a high HCOOH faradaic efficiency of 96 ± 0.64% at 400 mA cm-2 in acidic electrolyte and a high single-pass carbon conversion efficiency (SPCE) of 62.0%. Additionally, a Zn-CO2 battery with Bi-MOF-TS as the cathode demonstrates a peak power density of 21.4 mW cm-2 and maintains stability over 300 cycles.
School of Chemical Sciences University of Auckland Auckland New Zealand
School of the Environment and Safety Engineering Jiangsu University Zhenjiang PR China
Zobrazit více v PubMed
De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science364, eaav3506 (2019). PubMed
Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule2, 825–832 (2018).
Wang, G. et al. Electrocatalysis for CO2 conversion: from fundamentals to value-added products. Chem. Soc. Rev.50, 4993–5061 (2021). PubMed
Zhang, Z., Zhu, J., Chen, S., Sun, W. & Wang, D. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem. Int. Edit.62, e202215136 (2023). PubMed
Quan, Y., Zhu, J. & Zheng, G. Electrocatalytic reactions for converting CO2 to value‐added products. Small Sci.1, 2100043 (2021).
Li, G. et al. Direct plasma phosphorization of Cu foam for Li ion batteries. J. Mater. Chem. A8, 16920–16925 (2020).
Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy4, 732–745 (2019).
Chen, C., Kotyk, J. F. K. & Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem4, 2571–2586 (2018).
Zhu, J. et al. Advances and challenges in single-site catalysts towards electrochemical CO2 methanation. Energy Environ. Sci.16, 4812–4833 (2023).
Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci.11, 893–903 (2018).
Jin, S., Hao, Z., Zhang, K., Yan, Z. & Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew. Chem. Int. Edit.133, 20795–20816 (2021). PubMed
Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z. & Wei, L. N-bridged Co-N-Ni: new bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ. Sci.14, 3019–3028 (2021).
Hu, Q. et al. Facile synthesis of sub‐nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane. Angew. Chem. Int. Edit.59, 19054–19059 (2020). PubMed
Zhao, J. et al. Modulation of *CHxO adsorption to facilitate electrocatalytic reduction of CO2 to CH4 over Cu-based catalysts. J. Am. Chem. Soc.145, 6622–6627 (2023). PubMed
Chen, S. et al. Engineering water molecules activation center on multisite electrocatalysts for enhanced CO2 methanation. J. Am. Chem. Soc.144, 12807–12815 (2022). PubMed
Jiang, Z. et al. Discovery of main group single Sb–N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ. Sci.13, 2856–2863 (2020).
Wu, Z. et al. Engineering bismuth–tin interface in bimetallic aerogel with a 3D porous structure for highly selective electrocatalytic CO2 reduction to HCOOH. Angew. Chem. Int. Edit.133, 12662–12667 (2021). PubMed
Zheng, T. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol.16, 1386–1393 (2021). PubMed
Zheng, X. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule1, 794–805 (2017).
Shen, H. et al. Acidic CO2-to-HCOOH electrolysis with industrial-level current on phase engineered tin sulfide. Nat. Commun.14, 2843 (2023). PubMed PMC
Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature577, 509–513 (2020). PubMed
Ma, Y. et al. Confined growth of silver–copper janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction. Adv. Mater.34, 2110607 (2022). PubMed
Zhang, W. et al. A typical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction. J. Am. Chem. Soc.142, 11417–11427 (2020). PubMed
Xia, W. et al. Adjacent copper single atoms promote C–C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. J. Am. Chem. Soc.145, 17253–17264 (2023). PubMed
Zhu, J. et al. Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nat. Commun.14, 4670 (2023). PubMed PMC
Wang, W. et al. Carburized In2O3 nanorods endow CO2 electroreduction to formate at 1 A cm–2. ACS Catal.13, 796–802 (2022).
Lamagni, P. et al. Restructuring metal–organic frameworks to nanoscale bismuth electrocatalysts for highly active and selective CO2 reduction to formate. Adv. Funct. Mater.30, 1910408 (2020).
Zhang, E. et al. Bismuth single atoms resulting from transformation of metal–organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc.141, 16569–16573 (2019). PubMed
Cao, C. et al. Metal–organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem. Int. Edit.59, 15014–15020 (2020). PubMed
Deng, P. et al. Bismuth oxides with enhanced bismuth–oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal.10, 743–750 (2019).
Gilbert, B., Huang, F., Zhang, H., Waychunas, G. A. & Banfield, J. F. Nanoparticles: strained and stiff. Science305, 651–654 (2004). PubMed
Liu, H. et al. Observation on microenvironment changes of dynamic catalysts in acidic CO2 reduction. J. Am. Chem. Soc.146, 5333–5342 (2024). PubMed
Lhostis, F. et al. Promoting selective CO2 electroreduction to formic acid in acidic medium with low potassium concentrations under high CO2 pressure. Chem. Electro. Chem.11, e202300799 (2024).
Luo, M. & Guo, S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater.2, 1–13 (2017).
Potapenko, D. V., Li, Z., Kysar, J. W. & Osgood, R. M. Nanoscale strain engineering on the surface of a bulk TiO2 crystal. Nano Lett.14, 6185–6189 (2014). PubMed
Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2. Nano Lett.13, 5361–5366 (2013). PubMed
Du, M., Cui, L., Cao, Y., & Bard, AJ. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate. J. Am. Chem. Soc.137, 7397–7403 (2015). PubMed
Wang, H. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science354, 1031–1036 (2016). PubMed
Li, Y. et al. Enhancing local CO2 adsorption by L‐histidine incorporation for selective formate production over the wide potential window. Angew. Chem. Int. Edit. 62, e202313522 (2023). PubMed
Li, F. et al. Highly stable two-dimensional bismuth metal-organic frameworks for efficient electrochemical reduction of CO2. Appl. Catal. B Environ.277, 119241 (2020).
Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science372, 1074–1078 (2021). PubMed
Hao, Y.-C. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal.2, 448–456 (2019).
Duan, J. et al. Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nat. Commun.13, 2039 (2022). PubMed PMC
Tang, S.-F. et al. Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate. Sci. Bull.66, 1533–1541 (2021). PubMed
Chen, M. et al. In-situ/operando Raman techniques for in-depth understanding on electrocatalysis. Chem. Eng. J.461, 141939 (2023).
Zhang, W. et al. Dynamic restructuring of coordinatively unsaturated copper paddle wheel clusters to boost electrochemical CO2 reduction to hydrocarbons. Angew. Chem. Int. Edit.61, e202112116 (2022). PubMed
Yao, D. et al. The controllable reconstruction of Bi‐MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem. Int. Edit.133, 18326–18332 (2021). PubMed
Xia, Z. & Guo, S. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem. Soc. Rev.48, 3265–3278 (2019). PubMed
Fan, L. et al. Biaxially compressive strain in Ni/Ru core/shell nanoplates boosts Li–CO2 batteries. Adv. Mater.34, 2204134 (2022). PubMed
Luo, M. et al. PdMo bimetallene for oxygen reduction catalysis. Nature574, 81–85 (2019). PubMed
Zhong, H. et al. Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun.11, 1409 (2020). PubMed PMC
Zhu, J. et al. Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc.144, 15529–15538 (2022). PubMed
Firet, N. J. & Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal.7, 606–612 (2017).
Zhu, S., Jiang, B., Cai, W.-B. & Shao, M. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc.139, 15664–15667 (2017). PubMed
Morlanes, N., Takanabe, K. & Rodionov, V. Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst. ACS Catal.6, 3092–3095 (2016).
Hu, X.-M. et al. Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts. ACS Catal.8, 6255–6264 (2018).
Fan, K. et al. Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window. ACS Catal.10, 358–364 (2019).
Wang, T. et al. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high‐efficient CO2 electroreduction and high‐performance Zn–CO2 batteries. Adv. Mater.32, 2002430 (2020). PubMed
Yan, S. et al. Electron localization and lattice strain induced by surface lithium doping enable ampere‐level electrosynthesis of formate from CO2. Angew. Chem. Int. Edit.133, 25945–25949 (2021). PubMed
Xie, J. et al. Reversible aqueous Zinc–CO2 batteries based on CO2–HCOOH interconversion. Angew. Chem. Int. Edit.57, 16996–17001 (2018). PubMed
Zeng, Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun.12, 4088 (2021). PubMed PMC
Li, Z. et al. Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO2 electroreduction to formate. Adv. Mater.33, 2005113 (2021). PubMed
Ozden, A. et al. High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer. ACS Energy Lett.5, 2811–2818 (2020).
Lees, E. W., Mowbray, B. A. W., Parlane, F. G. L. & Berlinguette, C. P. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat. Rev. Mater.7, 55–64 (2022).
Ozden, A. et al. Carbon-efficient carbon dioxide electrolysers. Nat. Sustain.5, 563–573 (2022).
Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal.5, 388–396 (2022).
Kim, J. Y. T. et al. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat. Catal.5, 288–299 (2022).
Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B49, 14251 (1994). PubMed
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B54, 11169 (1996). PubMed
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.77, 3865 (1996). PubMed
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B50, 17953 (1994). PubMed
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 15 (2010). PubMed
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B13, 5188 (1976).
Chen, X. Activating inert non-defect sites in Bi catalysts using tensile strain engineering for highly active CO2 electroreduction. figshare 10.6084/m9.figshare.28148366 (2025). PubMed PMC