• This record comes from PubMed

Identifying Biomarkers for Remyelination and Recovery in Multiple Sclerosis: A Measure of Progress

. 2025 Feb 04 ; 13 (2) : . [epub] 20250204

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Links

PubMed 40002770
PubMed Central PMC11853245
DOI 10.3390/biomedicines13020357
PII: biomedicines13020357
Knihovny.cz E-resources

Background: Multiple sclerosis (MS) pathology is characterized by acute and chronic inflammation, demyelination, axonal injury, and neurodegeneration. After decades of research into MS-related degeneration, recent efforts have shifted toward recovery and the prevention of further damage. A key area of focus is the remyelination process, where researchers are studying the effects of pharmacotherapy on myelin repair mechanisms. Multiple compounds are being tested for their potential to foster remyelination in different clinical settings through the application of less or more complex techniques to assess their efficacy. Objective: To review current methods and biomarkers to track myelin regeneration and recovery over time in people with MS (PwMS), with potential implications for promyelinating drug testing. Methods: Narrative review, based on a selection of PubMed articles discussing techniques to measure in vivo myelin repair and functional recovery in PwMS. Results: Non-invasive tools, such as structural Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET), are being implemented to track myelin repair, while other techniques like evoked potentials, functional MRI, and digital markers allow the assessment of functional recovery. These methods, alone or in combination, have been employed to obtain precise biomarkers of remyelination and recovery in various clinical trials on MS. Conclusions: Combining different techniques to identify myelin restoration in MS could yield novel biomarkers, enhancing the accuracy of clinical trial outcomes for remyelinating therapies in PwMS.

Brain and Mind Center University of Sydney Sydney 2050 Australia

Department of Bioethics Medical University of Warsaw 02 091 Warsaw Poland

Department of Clinical Neurosciences University of Calgary Calgary AB T2N 1N4 Canada

Department of Neurology Hôpital Erasme Hôpital Universitaire de Bruxelles Université Libre de Bruxelles 1070 Brussels Belgium

Department of Neurology Medical Faculty Heinrich Heine University 40225 Düsseldorf Germany

Department of Neurology Palacky University Olomouc 779 00 Olomouc Czech Republic

Department of Neurology University of Warmia and Mazury 10 719 Olsztyn Poland

Department of Neurorehabilitation Sciences Casa di Cura Igea 20129 Milan Italy

Department of Neuroscience Biomedicine and Movement Science University of Verona 37129 Verona Italy

Experimental and Clinical Research Center Charité Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin 12203 Berlin Germany

Experimental Neurophysiology Unit Institute of Experimental Neurology IRCCS San Raffaele Scientific Institute Università Vita Salute San Raffaele 20132 Milan Italy

Institute of Regional Health Research and Institute of Molecular Medicine University of Southern Denmark 5230 Odense Denmark

Multiple Sclerosis Center 2nd Department of Neurology Aristotle University of Thessaloniki 541 24 Thessaloniki Greece

Neuroimmunology Unit Department of Neurosciences Hospital Alemán Buenos Aires C1425FQB Argentina

Neuroinflammation Imaging Laboratory Institute of NeuroScience Université Catholique de Louvain 1348 Brussels Belgium

Neurology Clinic Clinical Centre of Montenegro 81000 Podgorica Montenegro

Neurology Department Pitié Salpêtrière Hospital APHP 75013 Paris France

Neurology Unit GHNE Paris Saclay Hospital 91400 Orsay France

Nuffield Departement of Clinical Neuroscience University of Oxford Oxford OX1 2JD UK

Paris Brain Institute ICM CNRS Inserm Sorbonne Université 75005 Paris France

The Center for Neurological Research Department of Neurology Næstved Slagelse Ringsted Hospitals 4200 Slagelse Denmark

See more in PubMed

Santos E.N., Fields R.D. Regulation of myelination by microglia. Sci. Adv. 2021;7:eabk1131. doi: 10.1126/sciadv.abk1131. PubMed DOI PMC

Marton R.M., Miura Y., Sloan S.A., Li Q., Revah O., Levy R.J., Huguenard J.R., Pașca S.P. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat. Neurosci. 2019;22:484–491. doi: 10.1038/s41593-018-0316-9. PubMed DOI PMC

Franklin R.J.M., Frisén J., Lyons D.A. Revisiting remyelination: Towards a consensus on the regeneration of CNS myelin. Semin. Cell Dev. Biol. 2021;116:3–9. doi: 10.1016/j.semcdb.2020.09.009. PubMed DOI

Kent S.A., Miron V.E. Microglia regulation of central nervous system myelin health and regeneration. Nat. Rev. Immunol. 2024;24:49–63. doi: 10.1038/s41577-023-00907-4. PubMed DOI

Klotz L., Antel J., Kuhlmann T. Inflammation in multiple sclerosis: Consequences for remyelination and disease progression. Nat. Rev. Neurol. 2023;19:305–320. doi: 10.1038/s41582-023-00801-6. PubMed DOI

Lubetzki C., Zalc B., Williams A., Stadelmann C., Stankoff B. Remyelination in multiple sclerosis: From basic science to clinical translation. Lancet Neurol. 2020;19:678–688. doi: 10.1016/S1474-4422(20)30140-X. PubMed DOI

Heß K., Starost L., Kieran N.W., Thomas C., Vincenten M.C.J., Antel J., Martino G., Huitinga I., Healy L., Kuhlmann T. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol. 2020;140:359–375. doi: 10.1007/s00401-020-02189-9. PubMed DOI PMC

Bramow S., Frischer J.M., Lassmann H., Koch-Henriksen N., Lucchinetti C.F., Sørensen P.S., Laursen H. Demyelination versus remyelination in progressive multiple sclerosis. Brain. 2010;133:2983–2998. doi: 10.1093/brain/awq250. PubMed DOI

Brown R.A., Narayanan S., Arnold D.L. Imaging of repeated episodes of demyelination and remyelination in multiple sclerosis. Neuroimage Clin. 2014;6:20–25. doi: 10.1016/j.nicl.2014.06.009. PubMed DOI PMC

Qin C., Yang S., Chen M., Dong M.H., Zhou L.Q., Chu Y.H., Shen Z.X., Bosco D.B., Wu L.J., Tian D.S., et al. Modulation of microglial metabolism facilitates regeneration in demyelination. iScience. 2023;26:106588. doi: 10.1016/j.isci.2023.106588. PubMed DOI PMC

Ronzano R., Roux T., Thetiot M., Aigrot M.S., Richard L., Lejeune F.X., Mazuir E., Vallat J.M., Lubetzki C., Desmazières A. Microglia-neuron interaction at nodes of Ranvier depends on neuronal activity through potassium release and contributes to remyelination. Nat. Commun. 2021;12:5219. doi: 10.1038/s41467-021-25486-7. PubMed DOI PMC

Tan Y.L., Yuan Y., Tian L. Microglial regional heterogeneity and its role in the brain. Mol. Psychiatry. 2020;25:351–367. doi: 10.1038/s41380-019-0609-8. PubMed DOI PMC

das Neves S.P., Delivanoglou N., Ren Y., Cucuzza C.S., Makuch M., Almeida F., Sanchez G., Barber M.J., Rego S., Schrader R., et al. Meningeal lymphatic function promotes oligodendrocyte survival and brain myelination. Immunity. 2024;57:2328–2343.e8. doi: 10.1016/j.immuni.2024.08.004. PubMed DOI PMC

Prineas J.W., Kwon E.E., Cho E.S., Sharer L.R. Continual breakdown and regeneration of myelin in progressive multiple sclerosis plaques. Ann. N. Y. Acad. Sci. 1984;436:11–32. doi: 10.1111/j.1749-6632.1984.tb14773.x. PubMed DOI

Patrikios P., Stadelmann C., Kutzelnigg A., Rauschka H., Schmidbauer M., Laursen H., Sorensen P.S., Brück W., Lucchinetti C., Lassmann H. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006;129:3165–3172. doi: 10.1093/brain/awl217. PubMed DOI

Neumann B., Foerster S., Zhao C., Bodini B., Reich D.S., Bergles D.E., Káradóttir R.T., Lubetzki C., Lairson L.L., Zalc B., et al. Problems and Pitfalls of Identifying Remyelination in Multiple Sclerosis. Cell Stem Cell. 2020;26:617–619. doi: 10.1016/j.stem.2020.03.017. PubMed DOI

Xing Y.L., Röth P.T., Stratton J.A., Chuang B.H., Danne J., Ellis S.L., Ng S.W., Kilpatrick T.J., Merson T.D. Adult neural precursor cells from the subventricular zone contribute significantly to oligodendrocyte regeneration and remyelination. J. Neurosci. 2014;34:14128–14146. doi: 10.1523/JNEUROSCI.3491-13.2014. PubMed DOI PMC

Huré J.-B., Foucault L., Ghayad L.M., Marie C., Vachoud N., Baudouin L., Azmani R., Ivljanin N., Arevalo-Nuevo A., Pigache M., et al. Pharmacogenomic screening identifies and repurposes leucovorin and dyclonine as pro-oligodendrogenic compounds in brain repair. Nat. Commun. 2024;15:9837. doi: 10.1038/s41467-024-54003-9. PubMed DOI PMC

Cunniffe N., Coles A. Promoting remyelination in multiple sclerosis. J. Neurol. 2021;268:30–44. doi: 10.1007/s00415-019-09421-x. PubMed DOI PMC

Sim F.J., Zhao C., Penderis J., Franklin R.J. The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J. Neurosci. 2002;22:2451–2459. doi: 10.1523/JNEUROSCI.22-07-02451.2002. PubMed DOI PMC

Smith K.J., Blakemore W.F., McDonald W.I. The restoration of conduction by central remyelination. Brain. 1981;104:383–404. doi: 10.1093/brain/104.2.383. PubMed DOI

Irvine K.A., Blakemore W.F. Remyelination protects axons from demyelination-associated axon degeneration. Brain. 2008;131:1464–1477. doi: 10.1093/brain/awn080. PubMed DOI

Koch M.W., Moral E., Brieva L., Mostert J., Strijbis E.M., Comtois J., Repovic P., Bowen J.D., Wolinsky J.S., Lublin F.D., et al. Relapse recovery in relapsing-remitting multiple sclerosis: An analysis of the CombiRx dataset. Mult. Scler. 2023;29:1776–1785. doi: 10.1177/13524585231202320. PubMed DOI PMC

Lee J., Hyun J.W., Lee J., Choi E.J., Shin H.G., Min K., Nam Y., Kim H.J., Oh S.H. So You Want to Image Myelin Using MRI: An Overview and Practical Guide for Myelin Water Imaging. J. Magn. Reson. Imaging. 2021;53:360–373. doi: 10.1002/jmri.27059. PubMed DOI

Laule C., Vavasour I.M., Moore G.R.W., Oger J., Li D.K.B., Paty D.W., MacKay A.L. Water content and myelin water fraction in multiple sclerosis. A T2 relaxation study. J. Neurol. 2004;251:284–293. doi: 10.1007/s00415-004-0306-6. PubMed DOI

Sommer R.C., Hata J., Rimkus C.d.M., Klein da Costa B., Nakahara J., Sato D.K. Mechanisms of myelin repair, MRI techniques and therapeutic opportunities in multiple sclerosis. Mult. Scler. Relat. Disord. 2022;58:103407. doi: 10.1016/j.msard.2021.103407. PubMed DOI

Baliyan V., Das C.J., Sharma R., Gupta A.K. Diffusion weighted imaging: Technique and applications. World J. Radiol. 2016;8:785–798. doi: 10.4329/wjr.v8.i9.785. PubMed DOI PMC

Heath F., Hurley S.A., Johansen-Berg H., Sampaio-Baptista C. Advances in noninvasive myelin imaging. Dev. Neurobiol. 2018;78:136–151. doi: 10.1002/dneu.22552. PubMed DOI PMC

MacKay A.L., Laule C. Magnetic Resonance of Myelin Water: An in vivo Marker for Myelin. Brain Plast. 2016;2:71–91. doi: 10.3233/BPL-160033. PubMed DOI PMC

Alonso-Ortiz E., Levesque I.R., Pike G.B. MRI-based myelin water imaging: A technical review. Magn. Reson. Med. 2015;73:70–81. doi: 10.1002/mrm.25198. PubMed DOI

Wheeler-Kingshott C.A., Cercignani M. About “axial” and “radial” diffusivities. Magn. Reson. Med. 2009;61:1255–1260. doi: 10.1002/mrm.21965. PubMed DOI

Winklewski P.J., Sabisz A., Naumczyk P., Jodzio K., Szurowska E., Szarmach A. Understanding the Physiopathology Behind Axial and Radial Diffusivity Changes-What Do We Know? Front. Neurol. 2018;9:92. doi: 10.3389/fneur.2018.00092. PubMed DOI PMC

Aung W.Y., Mar S., Benzinger T.L. Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imaging Med. 2013;5:427. doi: 10.2217/iim.13.49. PubMed DOI PMC

York E.N., Thrippleton M.J., Meijboom R., Hunt D.P.J., Waldman A.D. Quantitative magnetization transfer imaging in relapsing-remitting multiple sclerosis: A systematic review and meta-analysis. Brain Commun. 2022;4:fcac088. doi: 10.1093/braincomms/fcac088. PubMed DOI PMC

Müller J., Lu P.J., Cagol A., Ruberte E., Shin H.G., Ocampo-Pineda M., Chen X., Tsagkas C., Barakovic M., Galbusera R., et al. Quantifying Remyelination Using χ-Separation in White Matter and Cortical Multiple Sclerosis Lesions. Neurology. 2024;103:e209604. doi: 10.1212/WNL.0000000000209604. PubMed DOI PMC

Mallik S., Samson R.S., Wheeler-Kingshott C.A., Miller D.H. Imaging outcomes for trials of remyelination in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 2014;85:1396–1404. doi: 10.1136/jnnp-2014-307650. PubMed DOI PMC

Jespersen S.N., Bjarkam C.R., Nyengaard J.R., Chakravarty M.M., Hansen B., Vosegaard T., Østergaard L., Yablonskiy D., Nielsen N.C., Vestergaard-Poulsen P. Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy. Neuroimage. 2010;49:205–216. doi: 10.1016/j.neuroimage.2009.08.053. PubMed DOI PMC

Chen J.T., Kuhlmann T., Jansen G.H., Collins D.L., Atkins H.L., Freedman M.S., O’Connor P.W., Arnold D.L. Voxel-based analysis of the evolution of magnetization transfer ratio to quantify remyelination and demyelination with histopathological validation in a multiple sclerosis lesion. Neuroimage. 2007;36:1152–1158. doi: 10.1016/j.neuroimage.2007.03.073. PubMed DOI

Wisnieff C., Ramanan S., Olesik J., Gauthier S., Wang Y., Pitt D. Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: Interpreting positive susceptibility and the presence of iron. Magn. Reson. Med. 2015;74:564–570. doi: 10.1002/mrm.25420. PubMed DOI PMC

Chen W., Gauthier S.A., Gupta A., Comunale J., Liu T., Wang S., Pei M., Pitt D., Wang Y. Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology. 2014;271:183–192. doi: 10.1148/radiol.13130353. PubMed DOI PMC

Rahmanzadeh R., Galbusera R., Lu P.J., Bahn E., Weigel M., Barakovic M., Franz J., Nguyen T.D., Spincemaille P., Schiavi S., et al. A New Advanced MRI Biomarker for Remyelinated Lesions in Multiple Sclerosis. Ann. Neurol. 2022;92:486–502. doi: 10.1002/ana.26441. PubMed DOI PMC

Bodini B., Tonietto M., Airas L., Stankoff B. Positron emission tomography in multiple sclerosis—Straight to the target. Nat. Rev. Neurol. 2021;17:663–675. doi: 10.1038/s41582-021-00537-1. PubMed DOI

Stankoff B., Wang Y., Bottlaender M., Aigrot M.S., Dolle F., Wu C., Feinstein D., Huang G.F., Semah F., Mathis C.A., et al. Imaging of CNS myelin by positron-emission tomography. Proc. Natl. Acad. Sci. USA. 2006;103:9304–9309. doi: 10.1073/pnas.0600769103. PubMed DOI PMC

Bodini B., Veronese M., García-Lorenzo D., Battaglini M., Poirion E., Chardain A., Freeman L., Louapre C., Tchikviladze M., Papeix C., et al. Dynamic Imaging of Individual Remyelination Profiles in Multiple Sclerosis. Ann. Neurol. 2016;79:726–738. doi: 10.1002/ana.24620. PubMed DOI PMC

Auvity S., Tonietto M., Caillé F., Bodini B., Bottlaender M., Tournier N., Kuhnast B., Stankoff B. Repurposing radiotracers for myelin imaging: A study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol,11C-MeDAS, and 11C-PiB. Eur. J. Nucl. Med. Mol. Imaging. 2020;47:490–501. doi: 10.1007/s00259-019-04516-z. PubMed DOI

Carotenuto A., Giordano B., Dervenoulas G., Wilson H., Veronese M., Chappell Z., Polychronis S., Pagano G., Mackewn J., Turkheimer F.E., et al. [(18)F]Florbetapir PET/MR imaging to assess demyelination in multiple sclerosis. Eur. J. Nucl. Med. Mol. Imaging. 2020;47:366–378. doi: 10.1007/s00259-019-04533-y. PubMed DOI PMC

Brugarolas P., Sánchez-Rodríguez J.E., Tsai H.M., Basuli F., Cheng S.H., Zhang X., Caprariello A.V., Lacroix J.J., Freifelder R., Murali D., et al. Development of a PET radioligand for potassium channels to image CNS demyelination. Sci. Rep. 2018;8:607. doi: 10.1038/s41598-017-18747-3. PubMed DOI PMC

Brugarolas P., Wilks M.Q., Noel J., Kaiser J.A., Vesper D.R., Ramos-Torres K.M., Guehl N.J., Macdonald-Soccorso M.T., Sun Y., Rice P.A., et al. Human biodistribution and radiation dosimetry of the demyelination tracer [(18)F]3F4AP. Eur. J. Nucl. Med. Mol. Imaging. 2023;50:344–351. doi: 10.1007/s00259-022-05980-w. PubMed DOI PMC

Guehl N.J., Ramos-Torres K.M., Linnman C., Moon S.H., Dhaynaut M., Wilks M.Q., Han P.K., Ma C., Neelamegam R., Zhou Y.P., et al. Evaluation of the potassium channel tracer [(18)F]3F4AP in rhesus macaques. J. Cereb. Blood Flow Metab. 2021;41:1721–1733. doi: 10.1177/0271678X20963404. PubMed DOI PMC

Schäffner E., Bosch-Queralt M., Edgar J.M., Lehning M., Strauß J., Fleischer N., Kungl T., Wieghofer P., Berghoff S.A., Reinert T., et al. Myelin insulation as a risk factor for axonal degeneration in autoimmune demyelinating disease. Nat. Neurosci. 2023;26:1218–1228. doi: 10.1038/s41593-023-01366-9. PubMed DOI PMC

Freeman L., Garcia-Lorenzo D., Bottin L., Leroy C., Louapre C., Bodini B., Papeix C., Assouad R., Granger B., Tourbah A., et al. The neuronal component of gray matter damage in multiple sclerosis: A [(11) C]flumazenil positron emission tomography study. Ann. Neurol. 2015;78:554–567. doi: 10.1002/ana.24468. PubMed DOI

Mansur A., Rabiner E.A., Comley R.A., Lewis Y., Middleton L.T., Huiban M., Passchier J., Tsukada H., Gunn R.N. Characterization of 3 PET Tracers for Quantification of Mitochondrial and Synaptic Function in Healthy Human Brain: (18)F-BCPP-EF, (11)C-SA-4503, and (11)C-UCB-J. J. Nucl. Med. 2020;61:96–103. doi: 10.2967/jnumed.119.228080. PubMed DOI

Hagens M.H.J., Golla S.S.V., Janssen B., Vugts D.J., Beaino W., Windhorst A.D., O’Brien-Brown J., Kassiou M., Schuit R.C., Schwarte L.A., et al. The P2X(7) receptor tracer [(11)C]SMW139 as an in vivo marker of neuroinflammation in multiple sclerosis: A first-in man study. Eur. J. Nucl. Med. Mol. Imaging. 2020;47:379–389. doi: 10.1007/s00259-019-04550-x. PubMed DOI PMC

Wei W., Poirion E., Bodini B., Durrleman S., Ayache N., Stankoff B., Colliot O. Predicting PET-derived demyelination from multimodal MRI using sketcher-refiner adversarial training for multiple sclerosis. Med. Image Anal. 2019;58:101546. doi: 10.1016/j.media.2019.101546. PubMed DOI

Gore J.C. Principles and practice of functional MRI of the human brain. J. Clin. Investig. 2003;112:4–9. doi: 10.1172/JCI200319010. PubMed DOI PMC

Backner Y., Kuchling J., Massarwa S., Oberwahrenbrock T., Finke C., Bellmann-Strobl J., Ruprecht K., Brandt A.U., Zimmermann H., Raz N., et al. Anatomical Wiring and Functional Networking Changes in the Visual System Following Optic Neuritis. JAMA Neurol. 2018;75:287–295. doi: 10.1001/jamaneurol.2017.3880. PubMed DOI PMC

Villoslada P., Solana E., Alba-Arbalat S., Martinez-Heras E., Vivo F., Lopez-Soley E., Calvi A., Camos-Carreras A., Dotti-Boada M., Bailac R.A., et al. Retinal Damage and Visual Network Reconfiguration Defines Visual Function Recovery in Optic Neuritis. Neurol. Neuroimmunol. Neuroinflamm. 2024;11:e200288. doi: 10.1212/NXI.0000000000200288. PubMed DOI PMC

Rocca M.A., Schoonheim M.M., Valsasina P., Geurts J.J.G., Filippi M. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin. 2022;35:103076. doi: 10.1016/j.nicl.2022.103076. PubMed DOI PMC

Huntenburg J.M., Bazin P.L., Goulas A., Tardif C.L., Villringer A., Margulies D.S. A Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex. Cereb. Cortex. 2017;27:981–997. doi: 10.1093/cercor/bhx030. PubMed DOI PMC

You Y., Gupta V.K., Chitranshi N., Reedman B., Klistorner A., Graham S.L. Visual Evoked Potential Recording in a Rat Model of Experimental Optic Nerve Demyelination. J. Vis. Exp. 2015;101:e52934. doi: 10.3791/52934-v. PubMed DOI PMC

Castoldi V., Marenna S., d’Isa R., Huang S.C., De Battista D., Chirizzi C., Chaabane L., Kumar D., Boschert U., Comi G., et al. Non-invasive visual evoked potentials to assess optic nerve involvement in the dark agouti rat model of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein. Brain Pathol. 2020;30:137–150. doi: 10.1111/bpa.12762. PubMed DOI PMC

Marenna S., Huang S.C., Dalla Costa G., d’Isa R., Castoldi V., Rossi E., Comi G., Leocani L. Visual Evoked Potentials to Monitor Myelin Cuprizone-Induced Functional Changes. Front. Neurosci. 2022;16:820155. doi: 10.3389/fnins.2022.820155. PubMed DOI PMC

Marenna S., Huang S.C., Rossi E., Castoldi V., Comi G., Leocani L. Transcranial direct current stimulation as a preventive treatment in multiple sclerosis? Preclinical evidence. Exp. Neurol. 2022;357:114201. doi: 10.1016/j.expneurol.2022.114201. PubMed DOI

Bejarano B., Bianco M., Gonzalez-Moron D., Sepulcre J., Goñi J., Arcocha J., Soto O., Del Carro U., Comi G., Leocani L., et al. Computational classifiers for predicting the short-term course of Multiple sclerosis. BMC Neurol. 2011;11:67. doi: 10.1186/1471-2377-11-67. PubMed DOI PMC

Hardmeier M., Leocani L., Fuhr P. A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS. Mult. Scler. 2017;23:1309–1319. doi: 10.1177/1352458517707265. PubMed DOI PMC

Leocani L., Rovaris M., Boneschi F.M., Medaglini S., Rossi P., Martinelli V., Amadio S., Comi G. Multimodal evoked potentials to assess the evolution of multiple sclerosis: A longitudinal study. J. Neurol. Neurosurg. Psychiatry. 2006;77:1030–1035. doi: 10.1136/jnnp.2005.086280. PubMed DOI PMC

Nuwer M.R., Packwood J.W., Myers L.W., Ellison G.W. Evoked potentials predict the clinical changes in a multiple sclerosis drug study. Neurology. 1987;37:1754. doi: 10.1212/WNL.37.11.1754. PubMed DOI

Pisa M., Chieffo R., Giordano A., Gelibter S., Comola M., Comi G., Leocani L. Upper limb motor evoked potentials as outcome measure in progressive multiple sclerosis. Clin. Neurophysiol. 2020;131:401–405. doi: 10.1016/j.clinph.2019.11.024. PubMed DOI

Dalla Costa G., Pisa M., Fabbella L., Furlan R., Comi G., Leocani L. Serum neurofilaments predict recovery after acute optic neuritis; Proceedings of the 28th Annual Meeting of the European Charcot Foundation; Baveno, Italy. 15–19 November 2020; Digital Edition.

Cadavid D., Balcer L., Galetta S., Aktas O., Ziemssen T., Vanopdenbosch L., Frederiksen J., Skeen M., Jaffe G.J., Butzkueven H., et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): A randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2017;16:189–199. doi: 10.1016/S1474-4422(16)30377-5. PubMed DOI

Green A.J., Gelfand J.M., Cree B.A., Bevan C., Boscardin W.J., Mei F., Inman J., Arnow S., Devereux M., Abounasr A., et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): A randomised, controlled, double-blind, crossover trial. Lancet. 2017;390:2481–2489. doi: 10.1016/S0140-6736(17)32346-2. PubMed DOI

Brown J.W.L., Cunniffe N.G., Prados F., Kanber B., Connick P., lin R.F., Chandran S., Altmann D., Chard D.T., Coles A.J. Retinoid-X receptor agonism promotes remyelination in relapsing-remitting multiple sclerosis: A phase 2 clinical trial. J. Neurol. Neurosurg. Psychiatry. 2022;93:A92. doi: 10.1136/jnnp-2022-ABN.300. DOI

Jenkins T.M., Toosy A.T., Ciccarelli O., Miszkiel K.A., Wheeler-Kingshott C.A., Henderson A.P., Kallis C., Mancini L., Plant G.T., Miller D.H., et al. Neuroplasticity predicts outcome of optic neuritis independent of tissue damage. Ann. Neurol. 2010;67:99–113. doi: 10.1002/ana.21823. PubMed DOI

Pisa M., Guerrieri S., Di Maggio G., Medaglini S., Moiola L., Martinelli V., Comi G., Leocani L. No evidence of disease activity is associated with reduced rate of axonal retinal atrophy in MS. Neurology. 2017;89:2469–2475. doi: 10.1212/WNL.0000000000004736. PubMed DOI

Pisa M., Croese T., Dalla Costa G., Guerrieri S., Huang S.C., Finardi A., Fabbella L., Sangalli F., Colombo B., Moiola L., et al. Subclinical anterior optic pathway involvement in early multiple sclerosis and clinically isolated syndromes. Brain. 2021;144:848–862. doi: 10.1093/brain/awaa458. PubMed DOI

Knier B., Schmidt P., Aly L., Buck D., Berthele A., Mühlau M., Zimmer C., Hemmer B., Korn T. Retinal inner nuclear layer volume reflects response to immunotherapy in multiple sclerosis. Brain. 2016;139:2855–2863. doi: 10.1093/brain/aww219. PubMed DOI

Montalban X., Graves J., Midaglia L., Mulero P., Julian L., Baker M., Schadrack J., Gossens C., Ganzetti M., Scotland A., et al. A smartphone sensor-based digital outcome assessment of multiple sclerosis. Mult. Scler. 2022;28:654–664. doi: 10.1177/13524585211028561. PubMed DOI PMC

Shema-Shiratzky S., Hillel I., Mirelman A., Regev K., Hsieh K.L., Karni A., Devos H., Sosnoff J.J., Hausdorff J.M. A wearable sensor identifies alterations in community ambulation in multiple sclerosis: Contributors to real-world gait quality and physical activity. J. Neurol. 2020;267:1912–1921. doi: 10.1007/s00415-020-09759-7. PubMed DOI

Pratap A., Grant D., Vegesna A., Tummalacherla M., Cohan S., Deshpande C., Mangravite L., Omberg L. Evaluating the Utility of Smartphone-Based Sensor Assessments in Persons With Multiple Sclerosis in the Real-World Using an App (elevateMS): Observational, Prospective Pilot Digital Health Study. JMIR Mhealth Uhealth. 2020;8:e22108. doi: 10.2196/22108. PubMed DOI PMC

Block V.J., Bove R., Zhao C., Garcha P., Graves J., Romeo A.R., Green A.J., Allen D.D., Hollenbach J.A., Olgin J.E., et al. Association of Continuous Assessment of Step Count by Remote Monitoring With Disability Progression Among Adults With Multiple Sclerosis. JAMA Netw. Open. 2019;2:e190570. doi: 10.1001/jamanetworkopen.2019.0570. PubMed DOI PMC

Zheng P., Jeng B., Huynh T.L.T., Aguiar E.J., Motl R.W. Free-Living Peak Cadence in Multiple Sclerosis: A New Measure of Real-World Walking? Neurorehabilit. Neural Repair. 2023;37:716–726. doi: 10.1177/15459683231206741. PubMed DOI

Sehic A., Guo S., Cho K.S., Corraya R.M., Chen D.F., Utheim T.P. Electrical Stimulation as a Means for Improving Vision. Am. J. Pathol. 2016;186:2783–2797. doi: 10.1016/j.ajpath.2016.07.017. PubMed DOI PMC

Kim E., Kim S., Kwon Y.W., Seo H., Kim M., Chung W.G., Park W., Song H., Lee D.H., Lee J., et al. Electrical stimulation for therapeutic approach. Interdiscip. Med. 2023;1:e20230003. doi: 10.1002/INMD.20230003. DOI

Li D.C., Li Q. Electrical stimulation of cortical neurons promotes oligodendrocyte development and remyelination in the injured spinal cord. Neural Regen. Res. 2017;12:1613–1615. doi: 10.4103/1673-5374.217330. PubMed DOI PMC

Frühbeis C., Kuo-Elsner W.P., Müller C., Barth K., Peris L., Tenzer S., Möbius W., Werner H.B., Nave K.A., Fröhlich D., et al. Oligodendrocytes support axonal transport and maintenance via exosome secretion. PLoS Biol. 2020;18:e3000621. doi: 10.1371/journal.pbio.3000621. PubMed DOI PMC

Hood D.C., Odel J.G., Zhang X. Tracking the recovery of local optic nerve function after optic neuritis: A multifocal VEP study. Investig. Ophthalmol. Vis. Sci. 2000;41:4032–4038. PubMed

Klistorner A., Graham S.L. Role of Multifocal Visually Evoked Potential as a Biomarker of Demyelination, Spontaneous Remyelination, and Myelin Repair in Multiple Sclerosis. Front. Neurosci. 2021;15:725187. doi: 10.3389/fnins.2021.725187. PubMed DOI PMC

Schmidt M.F., Pihl-Jensen G., Bille M.B., Frederiksen J.L. Anti-myelin oligodendrocyte glycoprotein antibodies in a girl with good recovery after five episodes of prior idiopathic optic neuritis. Am. J. Ophthalmol. Case Rep. 2021;22:101060. doi: 10.1016/j.ajoc.2021.101060. PubMed DOI PMC

Meuth S.G., Bittner S., Seiler C., Göbel K., Wiendl H. Natalizumab restores evoked potential abnormalities in patients with relapsing-remitting multiple sclerosis. Mult. Scler. 2011;17:198–203. doi: 10.1177/1352458510386998. PubMed DOI

Pfeuffer S., Kerschke L., Ruck T., Rolfes L., Pawlitzki M., Albrecht P., Wiendl H., Meuth S.G. Teriflunomide treatment is associated with optic nerve recovery in early multiple sclerosis. Ther. Adv. Neurol. Disord. 2021;14:1756286421997372. doi: 10.1177/1756286421997372. PubMed DOI PMC

Wang C., Barton J., Kyle K., Ly L., Barnett Y., Hartung H.P., Reddel S.W., Beadnall H., Taha M., Klistorner A., et al. Multiple sclerosis: Structural and functional integrity of the visual system following alemtuzumab therapy. J. Neurol. Neurosurg. Psychiatry. 2021;92:1319–1324. doi: 10.1136/jnnp-2021-326164. PubMed DOI

Nij Bijvank J.A., Hof S.N., Prouskas S.E., Schoonheim M.M., Uitdehaag B.M.J., van Rijn L.J., Petzold A. A novel eye-movement impairment in multiple sclerosis indicating widespread cortical damage. Brain. 2023;146:2476–2488. doi: 10.1093/brain/awac474. PubMed DOI PMC

Brown J.W.L., Cunniffe N.G., Prados F., Kanber B., Jones J.L., Needham E., Georgieva Z., Rog D., Pearson O.R., Overell J., et al. Safety and efficacy of bexarotene in patients with relapsing-remitting multiple sclerosis (CCMR One): A randomised, double-blind, placebo-controlled, parallel-group, phase 2a study. Lancet Neurol. 2021;20:709–720. doi: 10.1016/S1474-4422(21)00179-4. PubMed DOI

Hof S.N., Loonstra F.C., de Ruiter L.R.J., van Rijn L.J., Petzold A., Uitdehaag B.M.J., Nij Bijvank J.A. The prevalence of internuclear ophthalmoparesis in a population-based cohort of individuals with multiple sclerosis. Mult. Scler. Relat. Disord. 2022;63:103824. doi: 10.1016/j.msard.2022.103824. PubMed DOI

Kanhai K.M.S., Nij Bijvank J.A., Wagenaar Y.L., Klaassen E.S., Lim K., Bergheanu S.C., Petzold A., Verma A., Hesterman J., Wattjes M.P., et al. Treatment of internuclear ophthalmoparesis in multiple sclerosis with fampridine: A randomized double-blind, placebo-controlled cross-over trial. CNS Neurosci. Ther. 2019;25:697–703. doi: 10.1111/cns.13096. PubMed DOI PMC

Arnold D.L., Piani-Meier D., Bar-Or A., Benedict R.H.B., Cree B.A.C., Giovannoni G., Gold R., Vermersch P., Arnould S., Dahlke F., et al. Effect of siponimod on magnetic resonance imaging measures of neurodegeneration and myelination in secondary progressive multiple sclerosis: Gray matter atrophy and magnetization transfer ratio analyses from the EXPAND phase 3 trial. Mult. Scler. (Houndmills Basingstoke Engl.) 2022;28:1526. doi: 10.1177/13524585221076717. PubMed DOI PMC

Caverzasi E., Papinutto N., Cordano C., Kirkish G., Gundel T.J., Zhu A., Akula A.V., John Boscardin W., Neeb H., Henry R.G., et al. MWF of the corpus callosum is a robust measure of remyelination: Results from the ReBUILD trial. Proc. Natl. Acad. Sci. USA. 2023;120:e2217635120. doi: 10.1073/pnas.2217635120. PubMed DOI PMC

Trapp B.D., Nave K.-A. Multiple Sclerosis: An Immune or Neurodegenerative Disorder? Annu. Rev. Neurosci. 2008;31:247–269. doi: 10.1146/annurev.neuro.30.051606.094313. PubMed DOI

Chen J.T., Easley K., Schneider C., Nakamura K., Kidd G.J., Chang A., Staugaitis S.M., Fox R.J., Fisher E., Arnold D.L., et al. Clinically feasible MTR is sensitive to cortical demyelination in MS. Neurology. 2013;80:246–252. doi: 10.1212/WNL.0b013e31827deb99. PubMed DOI PMC

Lazzarotto A., Hamzaoui M., Tonietto M., Dubessy A.L., Khalil M., Pirpamer L., Ropele S., Enzinger C., Battaglini M., Stromillo M.L., et al. Time is myelin: Early cortical myelin repair prevents atrophy and clinical progression in multiple sclerosis. Brain. 2024;147:1331–1343. doi: 10.1093/brain/awae024. PubMed DOI PMC

Kornek B., Storch M.K., Weissert R., Wallstroem E., Stefferl A., Olsson T., Linington C., Schmidbauer M., Lassmann H. Multiple sclerosis and chronic autoimmune encephalomyelitis: A comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am. J. Pathol. 2000;157:267–276. doi: 10.1016/S0002-9440(10)64537-3. PubMed DOI PMC

Fyfe I. Remyelination stops degeneration in MS. Nat. Rev. Neurol. 2022;18:187. doi: 10.1038/s41582-022-00638-5. PubMed DOI

Ricigliano V.A.G., Tonietto M., Hamzaoui M., Poirion É., Lazzarotto A., Bottlaender M., Gervais P., Maillart E., Stankoff B., Bodini B. Spontaneous remyelination in lesions protects the integrity of surrounding tissues over time in multiple sclerosis. Eur. J. Neurol. 2022;29:1719–1729. doi: 10.1111/ene.15285. PubMed DOI

Tonietto M., Poirion E., Lazzarotto A., Ricigliano V., Papeix C., Bottlaender M., Bodini B., Stankoff B. Periventricular remyelination failure in multiple sclerosis: A substrate for neurodegeneration. Brain. 2023;146:182–194. doi: 10.1093/brain/awac334. PubMed DOI

Miron V.E., Boyd A., Zhao J.W., Yuen T.J., Ruckh J.M., Shadrach J.L., van Wijngaarden P., Wagers A.J., Williams A., Franklin R.J.M., et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 2013;16:1211–1218. doi: 10.1038/nn.3469. PubMed DOI PMC

Hamzaoui M., Garcia J., Boffa G., Lazzarotto A., Absinta M., Ricigliano V.A.G., Soulier T., Tonietto M., Gervais P., Bissery A., et al. Positron Emission Tomography with [18F]-DPA-714 Unveils a Smoldering Component in Most Multiple Sclerosis Lesions which Drives Disease Progression. Ann. Neurol. 2023;94:366–383. doi: 10.1002/ana.26657. PubMed DOI

Poirion E., Tonietto M., Lejeune F.X., Ricigliano V.A.G., Boudot de la Motte M., Benoit C., Bera G., Kuhnast B., Bottlaender M., Bodini B., et al. Structural and Clinical Correlates of a Periventricular Gradient of Neuroinflammation in Multiple Sclerosis. Neurology. 2021;96:e1865–e1875. doi: 10.1212/WNL.0000000000011700. PubMed DOI PMC

Ricigliano V.A.G., Morena E., Colombi A., Tonietto M., Hamzaoui M., Poirion E., Bottlaender M., Gervais P., Louapre C., Bodini B., et al. Choroid Plexus Enlargement in Inflammatory Multiple Sclerosis: 3.0-T MRI and Translocator Protein PET Evaluation. Radiology. 2021;301:166–177. doi: 10.1148/radiol.2021204426. PubMed DOI

Ricigliano V.A.G., Louapre C., Poirion E., Colombi A., Yazdan Panah A., Lazzarotto A., Morena E., Martin E., Bottlaender M., Bodini B., et al. Imaging Characteristics of Choroid Plexuses in Presymptomatic Multiple Sclerosis: A Retrospective Study. Neurol. Neuroimmunol. Neuroinflamm. 2022;9:e200026. doi: 10.1212/NXI.0000000000200026. PubMed DOI PMC

Ricigliano V.A.G., Stankoff B. Choroid plexuses at the interface of peripheral immunity and tissue repair in multiple sclerosis. Curr. Opin. Neurol. 2023;36:214–221. doi: 10.1097/WCO.0000000000001160. PubMed DOI

Stellmann J.P., Maarouf A., Schulz K.H., Baquet L., Pöttgen J., Patra S., Penner I.K., Gellißen S., Ketels G., Besson P., et al. Aerobic Exercise Induces Functional and Structural Reorganization of CNS Networks in Multiple Sclerosis: A Randomized Controlled Trial. Front. Hum. Neurosci. 2020;14:255. doi: 10.3389/fnhum.2020.00255. PubMed DOI PMC

Bučková B., Kopal J., Řasová K., Tintěra J., Hlinka J. Open Access: The Effect of Neurorehabilitation on Multiple Sclerosis-Unlocking the Resting-State fMRI Data. Front. Neurosci. 2021;15:662784. doi: 10.3389/fnins.2021.662784. PubMed DOI PMC

Sîrbu C.A., Thompson D.C., Plesa F.C., Vasile T.M., Jianu D.C., Mitrica M., Anghel D., Stefani C. Neurorehabilitation in Multiple Sclerosis—A Review of Present Approaches and Future Considerations. J. Clin. Med. 2022;11:7003. doi: 10.3390/jcm11237003. PubMed DOI PMC

Chard D.T., Alahmadi A.A.S., Audoin B., Charalambous T., Enzinger C., Hulst H.E., Rocca M.A., Rovira À., Sastre-Garriga J., Schoonheim M.M., et al. Mind the gap: From neurons to networks to outcomes in multiple sclerosis. Nat. Rev. Neurol. 2021;17:173–184. doi: 10.1038/s41582-020-00439-8. PubMed DOI

Ciccarelli O., Cohen J.A., Reingold S.C., Weinshenker B.G. Spinal cord involvement in multiple sclerosis and neuromyelitis optica spectrum disorders. Lancet Neurol. 2019;18:185–197. doi: 10.1016/S1474-4422(18)30460-5. PubMed DOI

Combes A.J.E., Clarke M.A., O’Grady K.P., Schilling K.G., Smith S.A. Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions. Neuroimage Clin. 2022;36:103244. doi: 10.1016/j.nicl.2022.103244. PubMed DOI PMC

Brownlee W.J., Altmann D.R., Prados F., Miszkiel K.A., Eshaghi A., Gandini Wheeler-Kingshott C.A.M., Barkhof F., Ciccarelli O. Early imaging predictors of long-term outcomes in relapse-onset multiple sclerosis. Brain. 2019;142:2276–2287. doi: 10.1093/brain/awz156. PubMed DOI

Sacks D., Baxter B., Campbell B.C.V., Carpenter J.S., Cognard C., Dippel D., Eesa M., Fischer U., Hausegger K., Hirsch J.A., et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int. J. Stroke. 2018;13:612–632. doi: 10.1016/j.jvir.2017.11.026. PubMed DOI

Dvorak A.V., Ljungberg E., Vavasour I.M., Liu H., Johnson P., Rauscher A., Kramer J.L.K., Tam R., Li D.K.B., Laule C., et al. Rapid myelin water imaging for the assessment of cervical spinal cord myelin damage. Neuroimage Clin. 2019;23:101896. doi: 10.1016/j.nicl.2019.101896. PubMed DOI PMC

Granziera C., Wuerfel J., Barkhof F., Calabrese M., De Stefano N., Enzinger C., Evangelou N., Filippi M., Geurts J.J.G., Reich D.S., et al. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain. 2021;144:1296–1311. doi: 10.1093/brain/awab029. PubMed DOI PMC

Lévy S., Guertin M.C., Khatibi A., Mezer A., Martinu K., Chen J.I., Stikov N., Rainville P., Cohen-Adad J. Test-retest reliability of myelin imaging in the human spinal cord: Measurement errors versus region- and aging-induced variations. PLoS ONE. 2018;13:e0189944. doi: 10.1371/journal.pone.0189944. PubMed DOI PMC

Combès B., Monteau L., Bannier E., Callot V., Labauge P., Ayrignac X., Carra Dallière C., Pelletier J., Maarouf A., de Seze J., et al. Measurement of magnetization transfer ratio (MTR) from cervical spinal cord: Multicenter reproducibility and variability. J. Magn. Reson. Imaging. 2019;49:1777–1785. doi: 10.1002/jmri.26537. PubMed DOI

Brown R.A., Narayanan S., Arnold D.L. Segmentation of magnetization transfer ratio lesions for longitudinal analysis of demyelination and remyelination in multiple sclerosis. Neuroimage. 2013;66:103–109. doi: 10.1016/j.neuroimage.2012.10.059. PubMed DOI

Gaubert M., Combès B., Bannier E., Masson A., Caron V., Baudron G., Ferré J.C., Michel L., Le Page E., Stankoff B., et al. Microstructural Damage and Repair in the Spinal Cord of Patients With Early Multiple Sclerosis and Association With Disability at 5 Years. Neurol. Neuroimmunol. Neuroinflamm. 2025;12:e200333. doi: 10.1212/NXI.0000000000200333. PubMed DOI PMC

Clarke M.A., Pareto D., Pessini-Ferreira L., Arrambide G., Alberich M., Crescenzo F., Cappelle S., Tintoré M., Sastre-Garriga J., Auger C., et al. Value of 3T Susceptibility-Weighted Imaging in the Diagnosis of Multiple Sclerosis. AJNR Am. J. Neuroradiol. 2020;41:1001–1008. doi: 10.3174/ajnr.A6547. PubMed DOI PMC

Gros C., De Leener B., Badji A., Maranzano J., Eden D., Dupont S.M., Talbott J., Zhuoquiong R., Liu Y., Granberg T., et al. Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. Neuroimage. 2019;184:901–915. doi: 10.1016/j.neuroimage.2018.09.081. PubMed DOI PMC

Heidari M., Radcliff A.B., McLellan G.J., Ver Hoeve J.N., Chan K., Kiland J.A., Keuler N.S., August B.K., Sebo D., Field A.S., et al. Evoked potentials as a biomarker of remyelination. Proc. Natl. Acad. Sci. USA. 2019;116:27074–27083. doi: 10.1073/pnas.1906358116. PubMed DOI PMC

Kerbrat A., Gros C., Badji A., Bannier E., Galassi F., Combès B., Chouteau R., Labauge P., Ayrignac X., Carra-Dalliere C., et al. Multiple sclerosis lesions in motor tracts from brain to cervical cord: Spatial distribution and correlation with disability. Brain. 2020;143:2089–2105. doi: 10.1093/brain/awaa162. PubMed DOI PMC

Pallix-Guyot M., Guennoc A.M., Blasco H., de Toffol B., Corcia P., Praline J. Predictive value of motor evoked potentials in clinically isolated syndrome. Acta Neurol. Scand. 2011;124:410–416. doi: 10.1111/j.1600-0404.2011.01498.x. PubMed DOI

Schlaeger R., D’Souza M., Schindler C., Grize L., Kappos L., Fuhr P. Prediction of MS disability by multimodal evoked potentials: Investigation during relapse or in the relapse-free interval? Clin. Neurophysiol. 2014;125:1889–1892. doi: 10.1016/j.clinph.2013.12.117. PubMed DOI

Hardmeier M., Jacques F., Albrecht P., Bousleiman H., Schindler C., Leocani L., Fuhr P. Multicentre assessment of motor and sensory evoked potentials in multiple sclerosis: Reliability and implications for clinical trials. Mult. Scler. J. Exp. Transl. Clin. 2019;5:2055217319844796. doi: 10.1177/2055217319844796. PubMed DOI PMC

Wang Y., Kyauk R.V., Shen Y.A., Xie L., Reichelt M., Lin H., Jiang Z., Ngu H., Shen K., Greene J.J., et al. TREM2-dependent microglial function is essential for remyelination and subsequent neuroprotection. Glia. 2023;71:1247–1258. doi: 10.1002/glia.24335. PubMed DOI

Cignarella F., Filipello F., Bollman B., Cantoni C., Locca A., Mikesell R., Manis M., Ibrahim A., Deng L., Benitez B.A., et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020;140:513–534. doi: 10.1007/s00401-020-02193-z. PubMed DOI PMC

Azzolini F., Gilio L., Pavone L., Iezzi E., Dolcetti E., Bruno A., Buttari F., Musella A., Mandolesi G., Guadalupi L., et al. Neuroinflammation Is Associated with GFAP and sTREM2 Levels in Multiple Sclerosis. Biomolecules. 2022;12:222. doi: 10.3390/biom12020222. PubMed DOI PMC

Cross A.H., Gelfand J.M., Thebault S., Bennett J.L., von Büdingen H.C., Cameron B., Carruthers R., Edwards K., Fallis R., Gerstein R., et al. Emerging Cerebrospinal Fluid Biomarkers of Disease Activity and Progression in Multiple Sclerosis. JAMA Neurol. 2024;81:373–383. doi: 10.1001/jamaneurol.2024.0017. PubMed DOI PMC

Öhrfelt A., Axelsson M., Malmeström C., Novakova L., Heslegrave A., Blennow K., Lycke J., Zetterberg H. Soluble TREM-2 in cerebrospinal fluid from patients with multiple sclerosis treated with natalizumab or mitoxantrone. Mult. Scler. 2016;22:1587–1595. doi: 10.1177/1352458515624558. PubMed DOI

Burman J., Zetterberg H., Fransson M., Loskog A.S., Raininko R., Fagius J. Assessing tissue damage in multiple sclerosis: A biomarker approach. Acta Neurol. Scand. 2014;130:81–89. doi: 10.1111/ane.12239. PubMed DOI

Zjukovskaja C., Larsson A., Cherif H., Kultima K., Burman J. Biomarkers of demyelination and axonal damage are decreased after autologous hematopoietic stem cell transplantation for multiple sclerosis. Mult. Scler. Relat. Disord. 2022;68:104210. doi: 10.1016/j.msard.2022.104210. PubMed DOI

Péter M., Török W., Petrovics-Balog A., Vígh L., Vécsei L., Balogh G. Cerebrospinal fluid lipidomic biomarker signatures of demyelination for multiple sclerosis and Guillain-Barré syndrome. Sci. Rep. 2020;10:18380. doi: 10.1038/s41598-020-75502-x. PubMed DOI PMC

Maciak K., Dziedzic A., Saluk J. Remyelination in multiple sclerosis from the miRNA perspective. Front. Mol. Neurosci. 2023;16:1199313. doi: 10.3389/fnmol.2023.1199313. PubMed DOI PMC

Kornfeld S.F., Cummings S.E., Yaworski R., De Repentigny Y., Gagnon S., Zandee S., Fathi S., Prat A., Kothary R. Loss of miR-145 promotes remyelination and functional recovery in a model of chronic central demyelination. Commun. Biol. 2024;7:813. doi: 10.1038/s42003-024-06513-x. PubMed DOI PMC

Gross C.C., Schulte-Mecklenbeck A., Steinberg O.V., Wirth T., Lauks S., Bittner S., Schindler P., Baranzini S.E., Groppa S., Bellmann-Strobl J., et al. Multiple sclerosis endophenotypes identified by high-dimensional blood signatures are associated with distinct disease trajectories. Sci. Transl. Med. 2024;16:eade8560. doi: 10.1126/scitranslmed.ade8560. PubMed DOI

Barbour C., Kosa P., Komori M., Tanigawa M., Masvekar R., Wu T., Johnson K., Douvaras P., Fossati V., Herbst R., et al. Molecular-based diagnosis of multiple sclerosis and its progressive stage. Ann. Neurol. 2017;82:795–812. doi: 10.1002/ana.25083. PubMed DOI PMC

Boulant N., Mauconduit F., Gras V., Amadon A., Le Ster C., Luong M., Massire A., Pallier C., Sabatier L., Bottlaender M., et al. In vivo imaging of the human brain with the Iseult 11.7-T MRI scanner. Nat. Methods. 2024;21:2013–2016. doi: 10.1038/s41592-024-02472-7. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...