The Relationship Between Genetic Variants at Loci 9p21, 6q25.1, and 2q36.3 and the Development of Cardiac Allograft Vasculopathy in Heart Transplant Patients

. 2025 Feb 19 ; 16 (2) : . [epub] 20250219

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40004565

Grantová podpora
NU20-06-00061 Ministry of Health of the Czech Republic
IN 00023001 Ministry of Health of the Czech Republic

BACKGROUND: Cardiac allograft vasculopathy (CAV) is an accelerated form of coronary artery disease (CAD) that is characterized by concentric fibrous intimal hyperplasia along the length of coronary vessels, and is recognized as long-term complication after heart transplantation. The chromosomal loci 9p21, 6q25.1, and 2q36.3, represented by their respective leading variants rs10757274, rs6922269 and rs2943634, have been linked with a history of CAD by genome-wide association studies. We aimed to investigate the associations of genetic variants at the loci 9p21, 6q25.1, and 2q36.3 with CAV as genetic risk factors for early prediction. METHODS: Genomic DNA was extracted from paired aortic samples of 727 heart recipients (average age 50.8 ± 12.2 years; 21.3% women) and corresponding donors (average age 39.7 ± 12.0 years; 26.1% women). The variants within the loci 9p21, 6q25.1, and 2q36.3 were genotyped using PCR-RFLP. RESULTS: The recipients' variants of 9p21 (OR 1.97; 95% CI, 1.21-3.19 for GG vs. +A comparison, p = 0.0056) and 2q36.3 (OR 2.46; 95% CI, 1.12-6.17 for +C vs. AA comparison, p = 0.0186) were associated with higher incidence of CAV during the first year following heart transplantation. No such association was found for donor genotypes. CONCLUSIONS: Our data suggest that variants at the locus 9p21 (rs10757274) and 2q36.3 (rs2943634) are associated with early CAV development.

Zobrazit více v PubMed

Khush K.K., Cherikh W.S., Chambers D.C., Harhay M.O., Hayes D., Jr., Hsich E., Meiser B., Potena L., Robinson A., Rossano J.W., et al. International Society for Heart and Lung Transplantation. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult heart transplantation report—2019; focus theme: Donor and recipient size match. J. Heart Lung Transplant. 2019;38:1056–1066. doi: 10.1016/j.healun.2019.08.004. Erratum in J. Heart Lung Transplant. 2020, 39, 91. PubMed DOI PMC

Michieli L., Lin C., Tona F. Non-Invasive Assessment of Coronary Microcirculation in Heart Transplantation. World J. Cardiovasc. Dis. 2019;9:796–811. doi: 10.4236/wjcd.2019.911071. DOI

Lee F., Nair V., Chih S. Cardiac allograft vasculopathy: Insights on pathogenesis and therapy. Clin. Transplant. 2020;34:e13794. doi: 10.1111/ctr.13794. PubMed DOI

Costa D., Picascia A., Grimaldi V., Amarelli C., Petraio A., Levi A., Di Donato M., Pirozzi A.V.A., Fiorito C., Moccia G., et al. Role of HLA matching and donor specific antibody development in long-term survival, acute rejection and cardiac allograft vasculopathy. Transpl. Immunol. 2024;83:102011. doi: 10.1016/j.trim.2024.102011. PubMed DOI

Densem C.G., Hutchinson I.V., Cooper A., Yonan N., Brooks N.H. Polymorphism of the transforming growth factor-beta 1 gene correlates with the development of coronary vasculopathy following cardiac transplantation. J. Heart Lung Transplant. 2000;19:551–556. doi: 10.1016/S1053-2498(00)00114-5. PubMed DOI

Densem C.G., Hutchinson I.V., Yonan N., Brooks N.H. Influence of interleukin-10 polymorphism on the development of coronary vasculopathy following cardiac transplantation. Transpl. Immunol. 2003;11:223–228. doi: 10.1016/S0966-3274(03)00015-7. PubMed DOI

Densem C.G., Ray M., Hutchinson I.V., Yonan N., Brooks N.H. Interleukin-6 polymorphism: A genetic risk factor for cardiac transplant related coronary vasculopathy? J. Heart Lung Transplant. 2005;24:559–565. doi: 10.1016/j.healun.2004.03.016. PubMed DOI

Ternstrom L., Jeppsson A., Ricksten A., Nilsson F. Tumor necrosis factor gene polymorphism and cardiac allograft vasculopathy. J. Heart Lung Transplant. 2005;24:433–438. doi: 10.1016/j.healun.2004.02.019. PubMed DOI

Tambur A.R., Pamboukian S., Costanzo M.R., Heroux A. Genetic polymorphism in platelet-derived growth factor and vascular endothelial growth factor are significantly associated with cardiac allograft vasculopathy. J. Heart Lung Transplant. 2006;25:690–698. doi: 10.1016/j.healun.2006.02.006. PubMed DOI

Khush K.K., Pawlikowska L., Menza R.L., Goldstein B.A., Hayden V., Nguyen J., Kim H., Poon A., Sapru A., Matthay M.A., et al. Beta-adrenergic receptor polymorphisms and cardiac graft function in potential organ donors. Am. J. Transplant. 2012;12:3377–3386. doi: 10.1111/j.1600-6143.2012.04266.x. PubMed DOI PMC

Mayerova L., Chaloupka A., Wohlfahrt P., Hubacek J.A., Bedanova H., Chen Z., Kautzner J., Melenovsky V., Malek I., Tomasek A., et al. Role of genetics in the development of cardiac allograft vasculopathy. Bratisl. Lek. Listy. 2023;124:193–200. doi: 10.4149/BLL_2023_031. PubMed DOI PMC

Samani N.J., Erdmann J., Hall A.S., Hengstenberg C., Mangino M., Mayer B., Dixon R.J., Meitinger T., Braund P., Wichmann H.E., et al. WTCCC and the Cardiogenics Consortium. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 2007;357:443–453. doi: 10.1056/NEJMoa072366. PubMed DOI PMC

Muendlein A., Saely C.H., Rhomberg S., Sonderegger G., Loacker S., Rein P., Beer S., Vonbank A., Winder T., Drexel H. Evaluation of the association of genetic variants on the chromosomal loci 9p21.3, 6q25.1, and 2q36.3 with angiographically characterized coronary artery disease. Atherosclerosis. 2009;205:174–180. doi: 10.1016/j.atherosclerosis.2008.10.035. PubMed DOI

Helgadottir A., Thorleifsson G., Manolescu A., Gretarsdottir S., Blondal T., Jonasdottir A., Jonasdottir A., Sigurdsson A., Baker A., Palsson A., et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–1493. doi: 10.1126/science.1142842. PubMed DOI

Cho H., Shen G.Q., Wang X., Wang F., Archacki S., Li Y., Yu G., Chakrabarti S., Chen Q., Wang Q.K. Long noncoding RNA ANRIL regulates endothelial cell activities associated with coronary artery disease by up-regulating CLIP1, EZR, and LYVE1 genes. J. Biol. Chem. 2019;294:3881–3898. doi: 10.1074/jbc.RA118.005050. PubMed DOI PMC

Zhang Y.N., Qiang B., Fu L.J. Association of ANRIL polymorphisms with coronary artery disease: A systemic meta-analysis. Medicine. 2020;99:e22569. doi: 10.1097/MD.0000000000022569. PubMed DOI PMC

Hubacek J.A., Staněk V., Gebauerová M., Poledne R., Aschermann M., Skalická H., Matoušková J., Kruger A., Pěnička M., Hrabáková H., et al. Rs6922269 marker at the MTHFD1L gene predict cardiovascular mortality in males after acute coronary syndrome. Mol. Biol. Rep. 2015;42:1289–1293. doi: 10.1007/s11033-015-3870-1. PubMed DOI

Palmer B.R., Slow S., Ellis K.L., Pilbrow A.P., Skelton L., Frampton C.M., Palmer S.C., Troughton R.W., Yandle T.G., Doughty R.N., et al. Genetic polymorphism rs6922269 in the MTHFD1L gene is associated with survival and baseline active vitamin B12 levels in post-acute coronary syndromes patients. PLoS ONE. 2014;9:e89029. doi: 10.1371/journal.pone.0089029. PubMed DOI PMC

Lim S., Hong J., Liu C.T., Hivert M.F., White C.C., Murabito J.M., O’Donnell C.J., Dupuis J., Florez J.C., Meigs J.B. Common variants in and near IRS1 and subclinical cardiovascular disease in the Framingham Heart Study. Atherosclerosis. 2013;229:149–154. doi: 10.1016/j.atherosclerosis.2013.03.037. PubMed DOI PMC

Pober J.S., Chih S., Kobashigawa J., Madsen J.C., Tellides G. Cardiac allograft vasculopathy: Current review and future research directions. Cardiovasc. Res. 2021;117:2624–2638. doi: 10.1093/cvr/cvab259. PubMed DOI PMC

Ramzy D., Rao V., Brahm J., Miriuka S., Delgado D., Ross H.J. Cardiac allograft vasculopathy: A review. Can. J. Surg. 2005;48:319–327. PubMed PMC

Rahmani M., Cruz R.P., Granville D.J., McManus B.M. Allograft vasculopathy versus atherosclerosis. Circ. Res. 2006;99:801–815. doi: 10.1161/01.RES.0000246086.93555.f3. PubMed DOI

Berry G.J., Burke M.M., Andersen C., Bruneval P., Fedrigo M., Fishbein M.C., Goddard M., Hammond E.H., Leone O., Marboe C., et al. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in heart transplantation. J. Heart Lung Transpl. 2013;32:1147–1162. doi: 10.1016/j.healun.2013.08.011. PubMed DOI

Stewart S., Winters G.L., Fishbein M.C., Tazelaar H.D., Kobashigawa J., Abrams J., Andersen C.B., Angelini A., Berry G.J., Burke M.M., et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J. Heart Lung Transpl. 2005;24:1710–1720. doi: 10.1016/j.healun.2005.03.019. PubMed DOI

Cooper L.T., Baughman K.L., Feldman A.M., Frustaci A., Jessup M., Kuhl U., Levine G.N., American Heart Association. American College of Cardiology. European Society of Cardiology et al. The role of endomyocardial biopsy in the management of cardiovascular disease: A scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation. 2007;116:2216–2233. doi: 10.1161/CIRCULATIONAHA.107.186093. PubMed DOI

Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC

Holdt L.M., Teupser D. Long noncoding RNA ANRIL: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis. Front. Cardiovasc. Med. 2018;5:145. doi: 10.3389/fcvm.2018.00145. PubMed DOI PMC

Gorenne I., Kavurma M., Scott S., Bennett M. Vascular smooth muscle cell senescence in atherosclerosis. Cardiovasc. Res. 2006;72:9–17. doi: 10.1016/j.cardiores.2006.06.004. PubMed DOI

Minamino T., Miyauchi H., Yoshida T., Ishida Y., Yoshida H., Komuro I. Endothelial cell senescence in human atherosclerosis: Role of telomere in endothelial dysfunction. Circulation. 2002;105:1541–1544. doi: 10.1161/01.CIR.0000013836.85741.17. PubMed DOI

Arregui M., Fisher E., Knüppel S., Buijsse B., di Giuseppe R., Fritsche A., Corella D., Willich S.N., Boeing H., Weikert C. Significant associations of the rs2943634 (2q36.3) genetic polymorphism with adiponectin, high density lipoprotein cholesterol and ischemic stroke. Gene. 2012;494:190–195. doi: 10.1016/j.gene.2011.12.009. PubMed DOI

Shahandeh N., Kashiyama K., Honda Y., Nsair A., Ali Z.A., Tobis J.M., Fearon W.F., Parikh R.V. Invasive Coronary Imaging Assessment for Cardiac Allograft Vasculopathy: State-of-the-Art Review. J. Soc. Cardiovasc. Angiogr. Interv. 2022;1:100344. doi: 10.1016/j.jscai.2022.100344. PubMed DOI PMC

Janouskova K., Hubacek J.A., Vymetalova J., Novakova S., Chytilova S., Lukasova M., Dlouha D. The association of genetic variants on the chromosomal loci 9p21, 6q25.1, and 2q36.3 with cardiac allograft vasculopathy development in patients after heart transplantation; Proceedings of the 28th Congress on Atherosclerosis; Brno, Czech Republic. 12–14 December 2024; [(accessed on 11 December 2024)]. Available online: https://athero.cz/2024/12/11/sbornik-abstrakt-28-kongresu-o-ateroskleroze/

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...