The Relationship Between Genetic Variants at Loci 9p21, 6q25.1, and 2q36.3 and the Development of Cardiac Allograft Vasculopathy in Heart Transplant Patients
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-06-00061
Ministry of Health of the Czech Republic
IN 00023001
Ministry of Health of the Czech Republic
PubMed
40004565
PubMed Central
PMC11855879
DOI
10.3390/genes16020236
PII: genes16020236
Knihovny.cz E-zdroje
- Klíčová slova
- SNPs, cardiac allograft vasculopathy, transplantation,
- MeSH
- alografty * MeSH
- celogenomová asociační studie MeSH
- dospělí MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lidské chromozomy, pár 2 genetika MeSH
- lidské chromozomy, pár 6 genetika MeSH
- lidské chromozomy, pár 9 genetika MeSH
- nemoci koronárních tepen * genetika patologie etiologie MeSH
- transplantace srdce * škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Cardiac allograft vasculopathy (CAV) is an accelerated form of coronary artery disease (CAD) that is characterized by concentric fibrous intimal hyperplasia along the length of coronary vessels, and is recognized as long-term complication after heart transplantation. The chromosomal loci 9p21, 6q25.1, and 2q36.3, represented by their respective leading variants rs10757274, rs6922269 and rs2943634, have been linked with a history of CAD by genome-wide association studies. We aimed to investigate the associations of genetic variants at the loci 9p21, 6q25.1, and 2q36.3 with CAV as genetic risk factors for early prediction. METHODS: Genomic DNA was extracted from paired aortic samples of 727 heart recipients (average age 50.8 ± 12.2 years; 21.3% women) and corresponding donors (average age 39.7 ± 12.0 years; 26.1% women). The variants within the loci 9p21, 6q25.1, and 2q36.3 were genotyped using PCR-RFLP. RESULTS: The recipients' variants of 9p21 (OR 1.97; 95% CI, 1.21-3.19 for GG vs. +A comparison, p = 0.0056) and 2q36.3 (OR 2.46; 95% CI, 1.12-6.17 for +C vs. AA comparison, p = 0.0186) were associated with higher incidence of CAV during the first year following heart transplantation. No such association was found for donor genotypes. CONCLUSIONS: Our data suggest that variants at the locus 9p21 (rs10757274) and 2q36.3 (rs2943634) are associated with early CAV development.
Cardio Center Institute for Clinical and Experimental Medicine 14021 Prague Czech Republic
Statistical Unit Institute for Clinical and Experimental Medicine 14021 Prague Czech Republic
Zobrazit více v PubMed
Khush K.K., Cherikh W.S., Chambers D.C., Harhay M.O., Hayes D., Jr., Hsich E., Meiser B., Potena L., Robinson A., Rossano J.W., et al. International Society for Heart and Lung Transplantation. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult heart transplantation report—2019; focus theme: Donor and recipient size match. J. Heart Lung Transplant. 2019;38:1056–1066. doi: 10.1016/j.healun.2019.08.004. Erratum in J. Heart Lung Transplant. 2020, 39, 91. PubMed DOI PMC
Michieli L., Lin C., Tona F. Non-Invasive Assessment of Coronary Microcirculation in Heart Transplantation. World J. Cardiovasc. Dis. 2019;9:796–811. doi: 10.4236/wjcd.2019.911071. DOI
Lee F., Nair V., Chih S. Cardiac allograft vasculopathy: Insights on pathogenesis and therapy. Clin. Transplant. 2020;34:e13794. doi: 10.1111/ctr.13794. PubMed DOI
Costa D., Picascia A., Grimaldi V., Amarelli C., Petraio A., Levi A., Di Donato M., Pirozzi A.V.A., Fiorito C., Moccia G., et al. Role of HLA matching and donor specific antibody development in long-term survival, acute rejection and cardiac allograft vasculopathy. Transpl. Immunol. 2024;83:102011. doi: 10.1016/j.trim.2024.102011. PubMed DOI
Densem C.G., Hutchinson I.V., Cooper A., Yonan N., Brooks N.H. Polymorphism of the transforming growth factor-beta 1 gene correlates with the development of coronary vasculopathy following cardiac transplantation. J. Heart Lung Transplant. 2000;19:551–556. doi: 10.1016/S1053-2498(00)00114-5. PubMed DOI
Densem C.G., Hutchinson I.V., Yonan N., Brooks N.H. Influence of interleukin-10 polymorphism on the development of coronary vasculopathy following cardiac transplantation. Transpl. Immunol. 2003;11:223–228. doi: 10.1016/S0966-3274(03)00015-7. PubMed DOI
Densem C.G., Ray M., Hutchinson I.V., Yonan N., Brooks N.H. Interleukin-6 polymorphism: A genetic risk factor for cardiac transplant related coronary vasculopathy? J. Heart Lung Transplant. 2005;24:559–565. doi: 10.1016/j.healun.2004.03.016. PubMed DOI
Ternstrom L., Jeppsson A., Ricksten A., Nilsson F. Tumor necrosis factor gene polymorphism and cardiac allograft vasculopathy. J. Heart Lung Transplant. 2005;24:433–438. doi: 10.1016/j.healun.2004.02.019. PubMed DOI
Tambur A.R., Pamboukian S., Costanzo M.R., Heroux A. Genetic polymorphism in platelet-derived growth factor and vascular endothelial growth factor are significantly associated with cardiac allograft vasculopathy. J. Heart Lung Transplant. 2006;25:690–698. doi: 10.1016/j.healun.2006.02.006. PubMed DOI
Khush K.K., Pawlikowska L., Menza R.L., Goldstein B.A., Hayden V., Nguyen J., Kim H., Poon A., Sapru A., Matthay M.A., et al. Beta-adrenergic receptor polymorphisms and cardiac graft function in potential organ donors. Am. J. Transplant. 2012;12:3377–3386. doi: 10.1111/j.1600-6143.2012.04266.x. PubMed DOI PMC
Mayerova L., Chaloupka A., Wohlfahrt P., Hubacek J.A., Bedanova H., Chen Z., Kautzner J., Melenovsky V., Malek I., Tomasek A., et al. Role of genetics in the development of cardiac allograft vasculopathy. Bratisl. Lek. Listy. 2023;124:193–200. doi: 10.4149/BLL_2023_031. PubMed DOI PMC
Samani N.J., Erdmann J., Hall A.S., Hengstenberg C., Mangino M., Mayer B., Dixon R.J., Meitinger T., Braund P., Wichmann H.E., et al. WTCCC and the Cardiogenics Consortium. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 2007;357:443–453. doi: 10.1056/NEJMoa072366. PubMed DOI PMC
Muendlein A., Saely C.H., Rhomberg S., Sonderegger G., Loacker S., Rein P., Beer S., Vonbank A., Winder T., Drexel H. Evaluation of the association of genetic variants on the chromosomal loci 9p21.3, 6q25.1, and 2q36.3 with angiographically characterized coronary artery disease. Atherosclerosis. 2009;205:174–180. doi: 10.1016/j.atherosclerosis.2008.10.035. PubMed DOI
Helgadottir A., Thorleifsson G., Manolescu A., Gretarsdottir S., Blondal T., Jonasdottir A., Jonasdottir A., Sigurdsson A., Baker A., Palsson A., et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–1493. doi: 10.1126/science.1142842. PubMed DOI
Cho H., Shen G.Q., Wang X., Wang F., Archacki S., Li Y., Yu G., Chakrabarti S., Chen Q., Wang Q.K. Long noncoding RNA ANRIL regulates endothelial cell activities associated with coronary artery disease by up-regulating CLIP1, EZR, and LYVE1 genes. J. Biol. Chem. 2019;294:3881–3898. doi: 10.1074/jbc.RA118.005050. PubMed DOI PMC
Zhang Y.N., Qiang B., Fu L.J. Association of ANRIL polymorphisms with coronary artery disease: A systemic meta-analysis. Medicine. 2020;99:e22569. doi: 10.1097/MD.0000000000022569. PubMed DOI PMC
Hubacek J.A., Staněk V., Gebauerová M., Poledne R., Aschermann M., Skalická H., Matoušková J., Kruger A., Pěnička M., Hrabáková H., et al. Rs6922269 marker at the MTHFD1L gene predict cardiovascular mortality in males after acute coronary syndrome. Mol. Biol. Rep. 2015;42:1289–1293. doi: 10.1007/s11033-015-3870-1. PubMed DOI
Palmer B.R., Slow S., Ellis K.L., Pilbrow A.P., Skelton L., Frampton C.M., Palmer S.C., Troughton R.W., Yandle T.G., Doughty R.N., et al. Genetic polymorphism rs6922269 in the MTHFD1L gene is associated with survival and baseline active vitamin B12 levels in post-acute coronary syndromes patients. PLoS ONE. 2014;9:e89029. doi: 10.1371/journal.pone.0089029. PubMed DOI PMC
Lim S., Hong J., Liu C.T., Hivert M.F., White C.C., Murabito J.M., O’Donnell C.J., Dupuis J., Florez J.C., Meigs J.B. Common variants in and near IRS1 and subclinical cardiovascular disease in the Framingham Heart Study. Atherosclerosis. 2013;229:149–154. doi: 10.1016/j.atherosclerosis.2013.03.037. PubMed DOI PMC
Pober J.S., Chih S., Kobashigawa J., Madsen J.C., Tellides G. Cardiac allograft vasculopathy: Current review and future research directions. Cardiovasc. Res. 2021;117:2624–2638. doi: 10.1093/cvr/cvab259. PubMed DOI PMC
Ramzy D., Rao V., Brahm J., Miriuka S., Delgado D., Ross H.J. Cardiac allograft vasculopathy: A review. Can. J. Surg. 2005;48:319–327. PubMed PMC
Rahmani M., Cruz R.P., Granville D.J., McManus B.M. Allograft vasculopathy versus atherosclerosis. Circ. Res. 2006;99:801–815. doi: 10.1161/01.RES.0000246086.93555.f3. PubMed DOI
Berry G.J., Burke M.M., Andersen C., Bruneval P., Fedrigo M., Fishbein M.C., Goddard M., Hammond E.H., Leone O., Marboe C., et al. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in heart transplantation. J. Heart Lung Transpl. 2013;32:1147–1162. doi: 10.1016/j.healun.2013.08.011. PubMed DOI
Stewart S., Winters G.L., Fishbein M.C., Tazelaar H.D., Kobashigawa J., Abrams J., Andersen C.B., Angelini A., Berry G.J., Burke M.M., et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J. Heart Lung Transpl. 2005;24:1710–1720. doi: 10.1016/j.healun.2005.03.019. PubMed DOI
Cooper L.T., Baughman K.L., Feldman A.M., Frustaci A., Jessup M., Kuhl U., Levine G.N., American Heart Association. American College of Cardiology. European Society of Cardiology et al. The role of endomyocardial biopsy in the management of cardiovascular disease: A scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation. 2007;116:2216–2233. doi: 10.1161/CIRCULATIONAHA.107.186093. PubMed DOI
Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC
Holdt L.M., Teupser D. Long noncoding RNA ANRIL: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis. Front. Cardiovasc. Med. 2018;5:145. doi: 10.3389/fcvm.2018.00145. PubMed DOI PMC
Gorenne I., Kavurma M., Scott S., Bennett M. Vascular smooth muscle cell senescence in atherosclerosis. Cardiovasc. Res. 2006;72:9–17. doi: 10.1016/j.cardiores.2006.06.004. PubMed DOI
Minamino T., Miyauchi H., Yoshida T., Ishida Y., Yoshida H., Komuro I. Endothelial cell senescence in human atherosclerosis: Role of telomere in endothelial dysfunction. Circulation. 2002;105:1541–1544. doi: 10.1161/01.CIR.0000013836.85741.17. PubMed DOI
Arregui M., Fisher E., Knüppel S., Buijsse B., di Giuseppe R., Fritsche A., Corella D., Willich S.N., Boeing H., Weikert C. Significant associations of the rs2943634 (2q36.3) genetic polymorphism with adiponectin, high density lipoprotein cholesterol and ischemic stroke. Gene. 2012;494:190–195. doi: 10.1016/j.gene.2011.12.009. PubMed DOI
Shahandeh N., Kashiyama K., Honda Y., Nsair A., Ali Z.A., Tobis J.M., Fearon W.F., Parikh R.V. Invasive Coronary Imaging Assessment for Cardiac Allograft Vasculopathy: State-of-the-Art Review. J. Soc. Cardiovasc. Angiogr. Interv. 2022;1:100344. doi: 10.1016/j.jscai.2022.100344. PubMed DOI PMC
Janouskova K., Hubacek J.A., Vymetalova J., Novakova S., Chytilova S., Lukasova M., Dlouha D. The association of genetic variants on the chromosomal loci 9p21, 6q25.1, and 2q36.3 with cardiac allograft vasculopathy development in patients after heart transplantation; Proceedings of the 28th Congress on Atherosclerosis; Brno, Czech Republic. 12–14 December 2024; [(accessed on 11 December 2024)]. Available online: https://athero.cz/2024/12/11/sbornik-abstrakt-28-kongresu-o-ateroskleroze/