• This record comes from PubMed

Evidence of the occurrence, detection, and ecotoxicity studies of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in aqueous environments

. 2025 Jun ; 23 (1) : 10. [epub] 20250225

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article, Review

Perflorochemicals (PFCs), among which are the most commonly detected perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are persistent emergent contaminants of concern in recent times. These compounds have been reported for their cytotoxicity, genotoxicity, carcinogenicity, immunotoxicity, and developmental toxicities. Meanwhile, they have been detected in diverse matrices such as soil, sediment, and, surprisingly, in serum and even breastmilk. Worrisomely, these compounds are detected in drinking water across the globe, aquaculture water, and other surface waters. Thus, it was important to appraise the studies conducted on PFOS and PFOA to provide an overview of the environmental status of contamination regarding them. The present review article sought to provide insights into the occurrence patterns and ecotoxic effects of both pollutants in the water ecosystems within five continents of the world. Based on the information gathered in this article, the ∑ P F O S concentration (ng/L) within the five continents is in the order Europe > Asia > Africa > North America > South America, while the ∑ P F O A level (ng/L) is in the order Europe > Asia > South America > Africa > North America. The study also investigated the previous works that have been conducted regarding the diverse elimination technologies employed for the removal of these pollutants from the aqueous environments, with plasma combined with surfactant process being the most efficient. Generally, studies on PFOS/PFOA are still scanty when compared to those on pharmaceuticals and personal care products (PPCPs), especially in North America. The information gathered in this study could be useful in establishing thresholds of PFOA and PFOS environmental levels and be adopted by appropriate authorities as safety guidelines.

Department of Biochemistry Faculty of Biological Sciences University of Nigeria Nsukka Enugu State Nigeria

Department of Biotechnology and Chemistry Vaal University of Technology Vanderbijlpark 1911 South Africa

Department of Chemical Sciences Tai Solarin University of Education Ogun State PMB 2118 Ijebu Ode Nigeria

Department of Chemistry Michael Okpara University of Agriculture Umudike Nigeria

Department of Chemistry University of the Free State Bloemfontein 9300 South Africa

Department of Environmental Science School of Ecological and Human Sustainability College of Agriculture and Environmental Sciences University of South Africa Florida Roodepoort 1710 Gauteng South Africa

Department of Physics Faculty of Science University of Maroua Maroua Cameroon

Department of Pure and Applied Chemistry Ladoke Akintola University of Technology Ogbomoso Nigeria

Department of Pure and Industrial Chemistry University of Nigeria Nsukka Nigeria

Environmental Fate of Chemicals and Remediation Laboratory Department of Biotechnology and Chemistry Vaal University of Technology Vanderbijlpark 1911 Gauteng South Africa

Institute for Coastal and Marine Research Nelson Mandela University P O Box 77000 Gqeberha 6031 South Africa

Institute of Environmental Health and Ecological Security School of the Environment and Safety Jiangsu University Engineering Zhenjiang 212013 People's Republic of China

Natural Science Unit School of General Studies University of Nigeria Nsukka Enugu State Nigeria

Research Centre for Toxic Compounds in the Environment Faculty of Science Masaryk University Kamenice 5 753 625 00 Brno Czech Republic

See more in PubMed

Paul AG, Jones KC, Sweetman AJ. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol. 2009;43(2):386–92. PubMed

Dorman FL, Reiner EJ. Chapter 33 - Gas chromatographic analysis of emerging and persistent environmental contaminants. In: Poole Cf, editor. Gas chromatography. 2nd ed. Amsterdam: Elsevier; 2021. pp. 835–64. 10.1016/B978-0-12-820675-1.00033-2.

Omotola EO, Olatunji OS, Moodley B. Trace detection of perfluorooctanoic acid and perfluorooctane sulfonate in surface sediments using a liquid chromatograph coupled to an electrospray ionization single quadrupole mass spectrometer (LC-ESI–Q-MS). Microchem J. 2024;199:109928. 10.1016/j.microc.2024.109928.

Place BJ, Field JA. Identification of novel fluorochemicals in aqueous film-forming foams used by the US military. Environ Sci Technol. 2012;46(13):7120–7. PubMed PMC

Backe WJ, Day TC, Field JA. Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater from US military bases by nonaqueous large-volume injection HPLC-MS/MS. Environ Sci Technol. 2013;47(10):5226–34. PubMed

D’Agostino LA, Mabury SA. Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates. Environ Sci Technol. 2014;48(1):121–9. 10.1021/es403729e. PubMed

Munoz G, Duy SV, Labadie P, Botta F, Budzinski H, Lestremau F, Liu J, Sauvé S. Analysis of zwitterionic, cationic, and anionic poly- and perfluoroalkyl surfactants in sediments by liquid chromatography polarity-switching electrospray ionization coupled to high resolution mass spectrometry. Talanta. 2016;152:447–56. 10.1016/J.Talanta.2016.02.021. PubMed

Barzen-Hanson KA, Roberts SC, Choyke S, Oetjen K, McAlees A, Riddell N, McCrindle R, Ferguson PL, Higgins CP, Field JA. Discovery of 40 classes of per-and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ Sci Technol. 2017;51(4):2047–57. PubMed

Mejia-Avendaño S, Munoz G, Vo Duy S, Desrosiers M, BenoiT P, Sauvé S, Liu J. Novel fluoroalkylated surfactants in soils following firefighting foam deployment during the lac-mégantic railway accident. Environ Sci Technol. 2017;51(15):8313–23. 10.1021/Acs.Est.7b02028. PubMed

Xiao F, Golovko SA, Golovko MY. Identification of novel non-ionic, cationic, zwitterionic, and anionic polyfluoroalkyl substances using Uplc–Tof–Mse high-resolution Parent ion search. Anal Chim Acta. 2017;988:41–9. 10.1016/J.Aca.2017.08.016. PubMed

Xiao F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: a review of current literature. Water Res. 2017;124:482–95. 10.1016/J.Watres.2017.07.024. PubMed

Xiao F, Hanson RA, Golovko SA, Golovko MY, Arnold WA. PFOA and PFOS are generated from zwitterionic and cationic precursor compounds during water disinfection with chlorine or ozone. Environ Sci Technol Lett. 2018;5(6):382–8. 10.1021/Acs.Estlett.8b00266.

Chen Y, Wei L, Luo W, Jiang N, Shi Y, Zhao P, Ga B, Pei Z, Li Y, Yang R, Zhang Q. Occurrence, spatial distribution, and sources of pfass in the water and sediment from lakes in the tibetan plateau. J Hazard Mater. 2023;443:130170. 10.1016/J.Jhazmat.2022.130170. PubMed

Takagi S, Adachi F, Miyano K, Koizumi Y, Tanaka H, Watanabe I, Tanabe S, Kannan K. Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes. Water Res. 2011;45(13):3925–32. 10.1016/J.Watres.2011.04.052. PubMed

Eschauzier C, Beerendonk E, Scholte-Veenendaal P, De Voogt P. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain. Environ Sci Technol. 2012;46(3):1708–15. PubMed

Mejia Avendaño S, Zhong G, Liu J. Comment on “Biodegradation of Perfluorooctanesulfonate (Pfos) as an emerging contaminant.” Chemosphere. 2015;138:1037–8. 10.1016/J.Chemosphere.2015.03.022. PubMed

Yu J, Hu J, Tanaka S, Fujii S. Perfluorooctane sulfonate (Pfos) and perfluorooctanoic acid (Pfoa) in sewage treatment plants. Water Res. 2009;43(9):2399–408. 10.1016/J.Watres.2009.03.009. PubMed

Xiao F, Halbach TR, Simcik MF, Gulliver JS. Input characterization of perfluoroalkyl substances in wastewater treatment plants: source discrimination by exploratory data analysis. Water Res. 2012;46(9):3101–9. PubMed

Xiao F, Simcik MF, Gulliver JS. Mechanisms for removal of perfluorooctane sulfonate (Pfos) and perfluorooctanoate (Pfoa) from drinking water by conventional and enhanced coagulation. Water Res. 2013;47(1):49–56. 10.1016/J.Watres.2012.09.024. PubMed

Razak MR, Aris AZ, Zainuddin AH, Yusoff FM, Balia Yusof ZN, Kim SD, Kim KW. Acute toxicity and risk assessment of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) in tropical cladocerans Moina micrura. Chemosphere. 2023;313:137377. PubMed

Ganesan S, Chawengkijwanich C, Gopalakrishnan M, Janjaroen D. Detection methods for sub-nanogram level of emerging pollutants – per and polyfluoroalkyl substances. Food Chem Toxicol. 2022;168:113377. 10.1016/J.Fct.2022.113377. PubMed

Post GB, Cohn PD, Cooper KR. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environ Res. 2012;116:93–117. PubMed

Kannan K. Perfluoroalkyl and polyfluoroalkyl substances: current and future perspectives. Environ Chem. 2011;8(4):333–8.

European Food Safety Authority. Opinion of the scientific panel on contaminants in the food chain on perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. EFSA J. 2008;653:1–131 . PubMed PMC

Hariharan G, Sunantha G, Robin RS, Darwin R, Purvaja R, Ramesh R. Early detection of emerging persistent perfluorinated alkyl substances (PFAS) along the east coast of India. Sci Total Environ. 2023;902:166155. 10.1016/J.Scitotenv.2023.166155. PubMed

Chaparro-Ortega A, Betancourt M, Rosas P, Fg Vázquez-Cuevas, Chavira R, Bonilla E, Casas E, Ducolomb Y. Endocrine disruptor effect of perfluorooctane sulfonic acid (Pfos) and perfluorooctanoic acid (Pfoa) on porcine ovarian cell steroidogenesis. Toxicol Vitro. 2018;46:86–93. PubMed

Coperchini F, Awwad O, Rotondi M, Santini F, Imbriani M, Chiovato L. Thyroid disruption by perfluorooctane sulfonate (Pfos) and perfluorooctanoate (Pfoa). J Endocrinol Invest. 2017;40:105–21. PubMed

Espartero LJL, Yamada M, Ford J, Owens G, Prow T, Juhasz A. Health-related toxicity of emerging per-and polyfluoroalkyl substances: comparison to legacy Pfos And Pfoa. Environ Res. 2022;212:113431. PubMed

Liu W, Xu L, Li X, Jin Yh, Sasaki K, Saito N, Sato I, Tsuda S. Human nails analysis as biomarker of exposure to perfluoroalkyl compounds. Environ Sci Technol. 2011;45(19):8144–50. 10.1021/Es1036207. PubMed

Pontius F (2019) Regulation of perfluorooctanoic acid (Pfoa) and perfluorooctane sulfonic acid (Pfos) in drinking water: a comprehensive review. Water 11 (10). 10.3390/W11102003

Wee SY, Aris AZ. Revisiting the “forever chemicals”, PFOA and PFOS exposure in drinking water. npj Clean Water. 2023;6(1):57. 10.1038/s41545-023-00274-6.

Yadav M, Osonga FJ, Sadik OA. Unveiling nano-empowered catalytic mechanisms for Pfas sensing, removal and destruction in water. SciTotal Environ. 2024;912:169279. 10.1016/J.Scitotenv.2023.169279. PubMed

USEPA. Drinking water health advisories for PFOA and PFOS. https://www.epa.gov/sdwa/past-pfoa-and-pfos-health-effects-science-documents. Accessed 14 Feb 2024.

Niu J, Lin H, Xu J, Wu H, Li Y. Electrochemical mineralization of perfluorocarboxylic acids (Pfcas) by Ce-Doped modified porous nanocrystalline Pbo2 film electrode. Environ Sci Technol. 2012;46(18):10191–8. PubMed

Appleman TD, Higgins CP, Quiñones O, Vanderford BJ, Kolstad C, Zeigler-Holady JC, Dickenson ERV. Treatment of Poly-and Perfluoroalkyl substances in us full-scale water treatment systems. Water Res. 2014;51:246–55. PubMed

Arias Espana VA, Mallavarapu M, Naidu R. Treatment technologies for aqueous perfluorooctanesulfonate (Pfos) and perfluorooctanoate (Pfoa): a critical review with an emphasis on field testing. Environ Technol Innov. 2015;4:168–81. 10.1016/J.Eti.2015.06.001.

Schaefer CE, Andaya C, Urtiaga A, McKenzie ER, Higgins CP. Electrochemical treatment of perfluorooctanoic acid (Pfoa) and perfluorooctane sulfonic acid (Pfos) in groundwater impacted by aqueous film forming foams (Afffs). J Hazardous Mater. 2015;295:170–5. PubMed

Zhang K, Huang J, Yu G, Zhang Q, Deng S, Wang B. Destruction of perfluorooctane sulfonate (Pfos) and perfluorooctanoic acid (Pfoa) by ball milling. Environ Sci Technol. 2013;47(12):6471–7. 10.1021/Es400346n. PubMed

Du Z, Deng S, Zhang S, Wang B, Huang J, Wang Y, Yu G, Xing B. Selective and high sorption of perfluorooctanesulfonate and perfluorooctanoate by fluorinated alkyl chain modified montmorillonite. J Phys Chem C. 2016;120(30):16782–90.

Zhang C, Peng Y, Ning K, Niu X, Tan S, Su P. Remediation of perfluoroalkyl substances in landfill leachates by electrocoagulation. Clean - Soil Air Water. 2014;42(12):1740–3. 10.1002/Clen.201300563.

Park S, Lee LS, Medina VF, Zull A, Waisner S. Heat-activated persulfate oxidation of Pfoa, 6: 2 fluorotelomer sulfonate, and Pfos under conditions suitable for in-situ groundwater remediation. Chemosphere. 2016;145:376–83. PubMed

Hu XC, Andrews DQ, Lindstrom AB, Bruton TA, Schaider LA, Grandjean P, Lohmann R, Carignan CC, Blum A, Balan SA, Higgins CP. Detection of poly-and perfluoroalkyl substances (PFASs) in US drinking water linked to industrial sites, military fire training areas, and wastewater treatment plants. Environ Sci Technol Lett. 2016;3(10):344–50. 10.1021/Acs.Estlett.6b00260. PubMed PMC

Xiao F, Simcik MF, Halbach TR, Gulliver JS. Perfluorooctane sulfonate (Pfos) and perfluorooctanoate (Pfoa) in soils and groundwater of a US Metropolitan area: migration and implications for human exposure. Water Res. 2015;72:64–74. PubMed

McGuire ME, Schaefer C, Richards T, Backe WJ, Field JA, Houtz E, Sedlak DL, Guelfo JL, Wunsch A, Higgins CP. Evidence of remediation-induced alteration of subsurface poly-and perfluoroalkyl substance distribution at a former firefighter training area. Environ Sci Technol. 2014;48(12):6644–52. PubMed

Schultz MM, Barofsky DF, Field JA. Quantitative determination of fluorinated alkyl substances by large-volume-injection liquid chromatography tandem mass spectrometry characterization of municipal wastewaters. Environ Sci Technol. 2006;40(1):289–95. PubMed PMC

Dauchy X, Boiteux V, Rosin C, Munoz J-F. Relationship between industrial discharges and contamination of raw water resources by perfluorinated compounds: part II: case study of a fluorotelomer polymer manufacturing plant. Bull Environ Contam Toxicol. 2012;89:531–6. PubMed

Boiteux V, Dauchy X, Bach C, Colin A, Hemard J, Sagres V, Rosin C, Munoz J-F. Concentrations and patterns of perfluoroalkyl and polyfluoroalkyl substances in a river and three drinking water treatment plants near and far from a major production source. Sci Total Environ. 2017;583:393–400. PubMed

Cordner A, De La Rosa VY, Schaider LA, Rudel RA, Richter L, Brown P. Guideline levels for Pfoa and Pfos in drinking water: the role of scientific uncertainty, risk assessment decisions, and social factors. J Expo Sci Environ Epidemiol. 2019;29(2):157–71. 10.1038/S41370-018-0099-9. PubMed PMC

Zheng G, Schreder E, Dempsey JC, Uding N, Chu V, Andres G, Sathyanarayana S, Salamova A. Per-and polyfluoroalkyl substances (PFAS) in breast milk: concerning trends for current-use PFAS. Environ Sci Technol. 2021;55(11):7510–20. 10.1021/Acs.Est.0c06978. PubMed

OECD. Toward a new comprehensive global database of per-and polyfluoroalkyl substances (PFASs): summary report on updating the OECD 2007 list of Per-and Polyfluoroalkyl Substances (PFASs); Report Number ENV/JM/MONO(2018)7. 2018. p. 24. http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/.

Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly-and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol. 2019;29(2):131–47. 10.1038/S41370-018-0094-1. PubMed PMC

Wee SY, Aris AZ. Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environ Int. 2017;106:207–33 PubMed

General PFAS Sampling Guidance. Retrieved on September 18, 2023 from https://www.michigan.gov/-/Media/Project/Websites/Pfas-Response/Sampling-Guidance/General.Pdf?Rev=5fb24f7dabf0468b9415679b60681503 (2018).

Sadia M, Beut LB, Pranić M, van Wezel AP, Ter Laak TL. Sorption of per-and poly-fluoroalkyl substances and their precursors on activated carbon under realistic drinking water conditions: Insights into sorbent variability and PFAS structural effects. Heliyon. 2024;10(3):E25130. 10.1016/J.Heliyon.2024.E25130. PubMed PMC

Seed B. Silanizing glassware. Current protocols in protein science. 1998; 13 (1):A.3e.1-A.3e.2. 10.1002/0471140864.Psa03es13 PubMed

Gupta KC. Marine sterols. A

Sinkway TD, Mehdi Q, Griffin EK, Correia K, Camacho CG, Aufmuth J, Ilvento C, Bowden JA. Crowdsourcing citizens for statewide mapping of per-and polyfluoroalkyl substances (PFAS) in Florida drinking water. Sci Total Environ. 2024;926:171932. 10.1016/J.Scitotenv.2024.171932. PubMed

Griffin EK, Aristizabal-Henao J, Timshina A, Ditz HL, Camacho CG, Da Silva BF, Coker ES, Quiñones KY, Aufmuth J, Bowden JA. Assessment of per-and polyfluoroalkyl substances (PFAS) in the Indian River Lagoon and Atlantic coast of Brevard County, FL, reveals distinct spatial clusters. Chemosphere. 2022;301:134478. 10.1016/J.Chemosphere.2022.134478. PubMed

Zarębska M, Bajkacz S, Hordyjewicz-Baran Z. Assessment of legacy and emerging pfas in the oder river: occurrence, distribution, and sources. Environ Res. 2024;251:118608. 10.1016/J.Envres.2024.118608. PubMed

Nakayama SF, Yoshikane M, Onoda Y, Nishihama Y, Iwai-Shimada M, Takagi M, Kobayashi Y, Isobe T. Worldwide trends in tracing poly-and perfluoroalkyl substances (PFAS) in the environment. TrAC Trends Anal Chem. 2019;121:115410. 10.1016/J.Trac.2019.02.011.

Mazzoni M, Rusconi M, Valsecchi S, Martins CP, Polesello S. An on-line solid phase extraction-liquid chromatography-tandem mass spectrometry method for the determination of perfluoroalkyl acids in drinking and surface waters. J Anal Methods Chem. 2015;2015(1):942016. PubMed PMC

Skaggs CS, Logue BA. Ultratrace analysis of per-and polyfluoroalkyl substances in drinking water using ice concentration linked with extractive stirrer and high performance liquid chromatography–tandem mass spectrometry. J Chromatogr A. 2021;1659:462493. PubMed

Martín J, Santos JL, Aparicio I, Alonso E. Determination of hormones, a plasticizer, preservatives, perfluoroalkylated compounds, and a flame retardant in water samples by ultrasound-assisted dispersive liquid–liquid microextraction based on the solidification of a floating organic drop. Talanta. 2015;143:335–43. PubMed

Concha-Graña E, Fernández-Martínez G, López-Mahía P, Prada-Rodríguez D, Muniategui-Lorenzo S. Fast and sensitive determination of per-and polyfluoroalkyl substances in seawater. J Chromatogr A. 2018;1555:62–73. PubMed

Huang Y, Li H, Bai M, Huang X. Efficient extraction of perfluorocarboxylic acids in complex samples with a monolithic adsorbent combining fluorophilic and anion-exchange interactions. Anal Chim Acta. 2018;1011:50–8. PubMed

Lin Y, Ruan T, Liu A, Jiang G. Identification of novel hydrogen-substituted polyfluoroalkyl ether sulfonates in environmental matrices near metal-plating facilities. Environ Sci Technol. 2017;51(20):11588–96. PubMed

Pan Y, Wang J, Yeung LW, Wei S, Dai J. Analysis of emerging per-and polyfluoroalkyl substances: progress and current issues. TrAC Trends Anal Chem. 2020;124:115481. 10.1016/J.Trac.2019.04.013.

Shoemaker JA, Boutin B, Grimmett P. Development of a US epa drinking water method for the analysis of selected perfluoroalkyl acids by solid-phase extraction and Lc-Ms-Ms. J Chromatogr Sci. 2009;47(1):3–11. PubMed

Chow SJ, Ojeda N, Jacangelo JG, Schwab KJ. Detection of ultrashort-chain and other per-and polyfluoroalkyl substances (PFAS) in US bottled water. Water Res. 2021;201:117292. 10.1016/J.Watres.2021.117292. PubMed

Pan C-G, Ying G-G, Liu Y-S, Zhang Q-Q, Chen Z-F, Peng F-J, Huang G-Y. Contamination profiles of perfluoroalkyl substances in five typical rivers of the pearl river delta region, South China. Chemosphere. 2014;114:16–25. 10.1016/J.Chemosphere.2014.04.005. PubMed

Wang Y-Q, Hu L-X, Liu T, Zhao J-H, Yang Y-Y, Liu Y-S, Ying G-G. Per- and polyfluoralkyl substances (Pfas) in drinking water system: target and non-target screening and removal assessment. Environ Int. 2022;163:107219. 10.1016/J.Envint.2022.107219. PubMed

Ohore OE, Ifon BE, Wang Y, Kazmi SS, Zhang J, Sanganyado E, Jiao X, Liu W, Wang Z. Vertical changes in water depth and environmental variables drove the antibiotics and antibiotic resistomes distribution, and microbial food web structures in the estuary and marine ecosystems. Environ Int. 2023;178:108118. 10.1016/J.Envint.2023.108118. PubMed

Batayi B, Okonkwo OJ, Daso AP. Poly-and perfluorinated substances in environmental water from the Hartbeespoort and Roodeplaat Dams, South Africa. Water SA. 2021;47(1):54–66.

Huff Chester A, Gordon C, Hartmann HA, Bartell SE, Ansah E, Yan T, Li B, Dampha NK, Edmiston PL, Novak PJ, Schoenfuss HL. Contaminants of emerging concern in the lower Volta river, Ghana, West Africa: the agriculture, aquaculture, and urban development nexus. Environ Toxicol Chem. 2022;41(2):369–81. 10.1002/Etc.5279. PubMed

Mudumbi JB, Ntwampe SK, Muganza FM, Okonkwo JO. Perfluorooctanoate and perfluorooctane sulfonate in South African river water. Water Sci Technol: a J Int Assoc Water Pollut Res. 2014;69(1):185–94. 10.2166/wst.2013.566. PubMed

Fagbayigbo BO, Opeolu BO, Fatoki OS, Olatunji OS. Validation and determination of nine PFCS in surface water and sediment samples using UPLC-QTOF-MS. Environ Monit Assess. 2018;190(6):346. 10.1007/s10661-018-6715-2. PubMed

Sharma BM, Bharat GK, Tayal S, Larssen T, Bečanová J, Karásková P, Whitehead PG, Futter MN, Butterfield D, Nizzetto L. Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the ganges river basin: emissions and implications for human exposure. Environ Poll. 2016;208:704–13. 10.1016/J.Envpol.2015.10.050. PubMed

Wettermark B, Elseviers M, Almarsdóttir AB, Andersen M, Benko R, Bennie M, Eriksson I, Godman B, Krska J, Poluzzi E, Taxis K, Vander Stichele R, Vlahović-Palčevski V. Introduction to drug utilization research. In: Drug utilization research. 2016. pp. 1–12. 10.1002/9781118949740.ch1.

Ma K, Lu Y, Zhang Y, Zhang Y. Trend of Pfas concentrations and prediction of potential risks in Taihu Lake of China by aquatox. Environ Res. 2024;251:118707. 10.1016/J.Envres.2024.118707. PubMed

Greger M, Landberg T. Removal of Pfas from water by aquatic plants. J Environ Manage. 2024;351:119895. 10.1016/J.Jenvman.2023.119895. PubMed

Boone JS, Vigo C, Boone T, Byrne C, Ferrario J, Benson R, Donohue J, Simmons JE, Kolpin DW, Furlong ET, Glassmeyer ST. Per-and polyfluoroalkyl substances in source and treated drinking waters of the United States. Sci Total Environ. 2019;653:359–69. 10.1016/J.Scitotenv.2018.10.245. PubMed PMC

Hassan MT-A, Chen X, Fnu PIJ, Osonga FJ, Sadik OA, Li M, Chen H. Rapid detection of per- and polyfluoroalkyl substances (PFAS) using paper spray-based mass spectrometry. J Hazard Mater. 2024;465:133366. 10.1016/j.jhazmat.2023.133366. PubMed

Skedung L, Savvidou E, Schellenberger S, Reimann A, Cousins IT, Benskin JP. Identification and quantification of fluorinated polymers in consumer products by combustion ion chromatography and pyrolysis-gas chromatography-mass spectrometry. Environ Sci: Processes Impacts. 2024;26(1):82–93. PubMed

Gebbink WA, Van Asseldonk L, Van Leeuwen SP. Presence of emerging per-and polyfluoroalkyl substances (PFASs) in river and drinking water near a fluorochemical production plant in the Netherlands. Environ Sci Technol. 2017;51(19):11057–65. 10.1021/Acs.Est.7b02488. PubMed PMC

Lai WWP, Lin YC, Wang YH, Guo YL, Lin AYC. Occurrence of emerging contaminants in aquaculture waters: cross-contamination between aquaculture systems and surrounding waters. Water Air Soil Pollut. 2018;229:1–12. 10.1007/S11270-018-3901-3.

Sun Q, Xiong Y, Bi R, Zhan X, Fan Y, Su C, Chen Z, Zheng Z, Diao J, Wang T. Occurrence, profile, and potential risks of novel and legacy polyfluoroalkyl substances in bullfrogs: pilot study in an intensive aquaculture region, China. Front Environ Sci. 2024;9:786297.

Chen M, Wang C, Gao K, Wang X, Fu J, Gong P, Wang Y. Perfluoroalkyl substances in precipitation from the Tibetan plateau during monsoon season: concentrations, source regions and mass fluxes. Chemosphere. 2021;282:131105. 10.1016/J.Chemosphere.2021.131105. PubMed

Ma X, Shan G, Chen M, Zhao J, Zhu L. Riverine inputs and source tracing of perfluoroalkyl substances (Pfass) in Taihu Lake, China. Sci Total Environ. 2018;612:18–25. 10.1016/J.Scitotenv.2017.08.235. PubMed

Chen H, Han J, Zhang C, Cheng J, Sun R, Wang X, Han G, Yang W, He X. Occurrence and seasonal variations of per- and polyfluoroalkyl substances (Pfass) including fluorinated alternatives in rivers, drain outlets and the receiving Bohai Sea Of China. Environ Pollut. 2017;231:1223–31. 10.1016/J.Envpol.2017.08.068. PubMed

Kim KY, Ekpe OD, Lee HJ, Oh JE. Perfluoroalkyl substances and pharmaceuticals removal in full-scale drinking water treatment plants. J Hazard Mater. 2020;400:123235. 10.1016/J.Jhazmat.2020.123235. PubMed

Pan C-G, Liu Y-S, Ying G-G. Perfluoroalkyl substances (Pfass) in wastewater treatment plants and drinking water treatment plants: removal efficiency and exposure risk. Water Res. 2016;106:562–70. 10.1016/J.Watres.2016.10.045. PubMed

Zhao Z, Cheng X, Hua X, Jiang B, Tian C, Tang J, Li Q, Sun H, Lin T, Liao Y, Zhang G. Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the bohai sea and its surrounding rivers. Environ Pollut. 2020;263:114391. 10.1016/J.Envpol.2020.114391. PubMed

Wang C, Lu Y, Li Q, Cao X, Zhang M, Zhou Y, Song S, Wang P, Lu X, Yvette B, Liu Z. Assessing the contribution of atmospheric transport and tourism activities to the occurrence of perfluoroalkyl acids (Pfaas) in an alpine nature reserve. Sci Total Environ. 2019;697:133851. 10.1016/J.Scitotenv.2019.133851. PubMed

Lee Y-M, Lee J-Y, Kim M-K, Yang H, Lee J-E, Son Y, Kho Y, Choi K, Zoh K-D. Concentration and distribution of per- and polyfluoroalkyl substances (Pfas) in the asan lake area of South Korea. J Hazard Mater. 2020;381:120909. 10.1016/J.Jhazmat.2019.120909. PubMed

Rodrigues DA, Starling MC, de Barros AL, Santos MC, da Silva ES, Viana GC, Ribeiro LF, Simcik MF, Amorim CC. Occurrence of antibiotics, hormones and Pfas in surface water from a Nile tilapia aquaculture facility in a Brazilian hydroelectric reservoir. Chemosphere. 2024;352:141444. 10.1016/J.Chemosphere.2024.141444. PubMed

Bai X, Son Y. Perfluoroalkyl substances (Pfas) in surface water and sediments from two urban watersheds In Nevada, USA. Sci Total Environ. 2021;751:141622. 10.1016/J.Scitotenv.2020.141622. PubMed

Munoz G, Liu M, Vo Duy S, Liu J, Sauvé S. Target and nontarget screening of Pfas in drinking water for a large-scale survey of urban and rural communities in Québec, Canada. Water Res. 2023;233:119750. 10.1016/J.Watres.2023.119750. PubMed

Ogunbiyi OD, Massenat N, Quinete N. Dispersion and stratification of per-and polyfluoroalkyl substances (Pfas) in surface and deep-water profiles: a case study of the Biscayne Bay Area. Sci Total Environ. 2024;909:168413. 10.1016/J.Scitotenv.2023.168413. PubMed

Li X, Fatowe M, Cui D, Quinete N. Assessment of per- and polyfluoroalkyl substances in Biscayne bay surface waters and tap waters from South Florida. Sci Total Environ. 2022;806:150393. 10.1016/J.Scitotenv.2021.150393. PubMed

Wang Q, Bhattarai M, Zhao P, Alnsour T, Held M, Faik A, Chen H. Fast and sensitive detection of oligosaccharides using desalting paper spray mass spectrometry (Dps-Ms). J Am Soc Mass Spectrom. 2020;31(10):2226–35. PubMed PMC

Chiu KY, Wang Q, Gunawardena HP, Held M, Faik A, Chen H. Desalting paper spray mass spectrometry (Dps-Ms) for rapid detection of glycans and glycoconjugates. Int J Mass Spectrom. 2021;469:116688. PubMed PMC

Bhavya MB, Rhakho N, Jena SR, Yadav S, Altaee A, Saxena M, Samal AK. Detection of PFAS via surface enhanced Raman scattering: challenges and future perspectives. Sustain Chem Environ. 2023;100031. 10.1016/J.Scenv.2023.100031.

Taylor T. The LCGC Blog: ammonium acetate woes. https://www.chromatographyonlinecom/View/Lcgc-Blog-Ammonium-Acetate-Woes. 2019.

Janda J, Nödler K, Brauch HJ, Zwiener C, Lange FT. Robust trace analysis of polar (C2–C8) perfluorinated carboxylic acids by liquid chromatography-tandem mass spectrometry: method development and application to surface water, groundwater and drinking water. Environ Sci Pollut Res. 2019;26(8):7326–36. 10.1007/S11356-018-1731-X. PubMed

Rodwan Jr JG. Significant but slower, growth for bottled water in 2018. International Bottled Water Association. 2018. https://bottledwater.org/wp-content/uploads/2020/03/2018BottledWaterStats_pub2019.pdf

Hensema TJ, Berendsen BJ, van Leeuwen SP. Non-targeted identification of per-and polyfluoroalkyl substances at trace level in surface water using fragment ion flagging. Chemosphere. 2021;265:128599. 10.1016/J.Chemosphere.2020.128599. PubMed

Lenart-Boroń A, Wolanin AA, Jelonkiewicz Ł, Żelazny M. Factors and mechanisms affecting seasonal changes in the prevalence of microbiological indicators of water quality and nutrient concentrations in waters of the Białka River catchment, Southern Poland. Water, Air, Soil Poll. 2016;227(9):302. 10.1007/S11270-016-2931-Y. PubMed PMC

Wang X, Halsall C, Codling G, Xie Z, Xu B, Zhao Z, Xue Y, Ebinghaus R, Jones KC. Accumulation of perfluoroalkyl compounds in Tibetan Mountain snow: temporal patterns from 1980 to 2010. Environ Sci Technol. 2014;48(1):173–81. 10.1021/Es4044775. PubMed

Chen H, Wang X, Zhang C, Sun R, Han J, Han G, Yang W, He X. Occurrence and inputs of perfluoroalkyl substances (Pfass) from rivers and drain outlets to the Bohai Sea, China. Environ Poll. 2017;221:234–43. 10.1016/J.Envpol.2016.11.070. PubMed

Lee Y-M, Lee J-Y, Kim M-K, Yang H, Lee J-E, Son Y, Kho Y, Choi K, Zoh K-D. Concentration and distribution of per-and polyfluoroalkyl substances (Pfas) in the Asan Lake area of South Korea. J Hazard Mater. 2020;381:120909. PubMed

Souza MCO, Rocha BA, Adeyemi JA, Nadal M, Domingo JL, Barbosa F Jr. Legacy and emerging pollutants in latin america: a critical review of occurrence and levels in environmental and food samples. Sci Total Environ. 2022;848:157774. 10.1016/J.Scitotenv.2022.157774. PubMed

Hansen S, Xu S, Huber S, Alvarez MV, Odland JØ. Profile of per-and polyfluoroalkyl substances, source appointment, and determinants in Argentinean postpartum women. Sci Total Environ. 2024;915:170096. 10.1016/J.Scitotenv.2024.170096. PubMed

Delor L, Louzon M, Pelosi C, Michel E, Maillet G, Carronnier H. Ecotoxicity of single and mixture of perfluoroalkyl substances (Pfos And Pfoa) in soils to the earthworm aporrectodea caliginosa. Environ Pollut. 2023;335:122221. 10.1016/J.Envpol.2023.122221. PubMed

He W, Megharaj M, Naidu R. Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil. Environ Monitor Assess. 2016;188:1–7. PubMed

Wang Z, Li C, Shao Y, Xue W, Wang N, Xu X, Zhang Z. Antioxidant defense system responses, lysosomal membrane stability and dna damage in earthworms (Eisenia Fetida) exposed to perfluorooctanoic acid: an integrated biomarker approach to evaluating toxicity. RSC Adv. 2021;11(43):26481–92. PubMed PMC

Crebelli R, Caiola S, Conti L, Cordelli E, De Luca G, Dellatte E, Eleuteri P, Iacovella N, Leopardi P, Marcon F, Sanchez M, Sestili P, Siniscalchi E, Villani P. Can sustained exposure to Pfas trigger a genotoxic response? A comprehensive genotoxicity assessment in mice after subacute oral administration of Pfoa and Pfba. Regul Toxicol Pharmacol. 2019;106:169–77. 10.1016/J.Yrtph.2019.05.005. PubMed

Emerce E, Çetin Ö. Genotoxicity assessment of perfluoroalkyl substances on human sperm. Toxicol Ind Health. 2018;34(12):884–90. 10.1177/0748233718799191. PubMed

Liang R, He J, Shi Y, Li Z, Sarvajayakesavalu S, Baninla Y, Guo F, Chen J, Xu X, Lu Y. Effects of perfluorooctane sulfonate on immobilization, heartbeat, reproductive and biochemical performance of daphnia magna. Chemosphere. 2017;168:1613–8. 10.1016/J.Chemosphere.2016.11.147. PubMed

Barmentlo SH, Stel JM, van Doorn M, Eschauzier C, de Voogt P, Kraak MH. Acute and chronic toxicity of short chained perfluoroalkyl substances to daphnia magna. Environ Poll. 2015;198:47–53. PubMed

Macorps N, Labadie P, Lestremau F, Assoumani A, Budzinski H. Per- and polyfluoroalkyl substances (Pfas) in surface sediments: occurrence, patterns, spatial distribution and contribution of unattributed precursors in French aquatic environments. Sci Total Environ. 2023;874:162493. 10.1016/J.Scitotenv.2023.162493. PubMed

Soudani M, Hegg L, Rime C, Coquoz C, Grosjean DB, Danza F, Solcà N, Lucarini F, Staedler D. Determination of per-and polyfluoroalkyl substances (PFAS) in six different fish species from Swiss lakes. Anal Bioanal Chem. 2024;416(28):6377–86. 10.1007/S00216-024-05524-1. PubMed PMC

Wei Z, Liu J, Wang N, Wei K. Kidney function mediates the association of per- and poly-fluoroalkyl substances (Pfas) and heavy metals with hepatic fibrosis risk. Environ Res. 2024;263:120092. 10.1016/J.Envres.2024.120092. PubMed

Liu D, Yan S, Wang P, Chen Q, Liu Y, Cui J, Liang Y, Ren S, Gao Y. Perfluorooctanoic acid (Pfoa) exposure in relation to the kidneys: a review of current available literature. Front Physiol. 2023;14:1103141. 10.3389/Fphys.2023.1103141. PubMed PMC

Yao D, Shao J, Jia D, Sun W. Immunotoxicity of legacy and alternative per- and polyfluoroalkyl substances on zebrafish larvae. Environ Pollut. 2024;358:124511. 10.1016/J.Envpol.2024.124511. PubMed

Pierozan P, Jerneren F, Karlsson O. Perfluorooctanoic acid (Pfoa) exposure promotes proliferation, migration and invasion potential in human breast epithelial cells. Arch Toxicol. 2018;92(5):1729–39. 10.1007/S00204-018-2181-4. PubMed PMC

Spyrou A, Vlastos D, Antonopoulou M. Evidence on the genotoxic and ecotoxic effects of Pfoa, Pfos and their mixture on human lymphocytes and bacteria. Environ Res. 2024;248:118298. 10.1016/J.Envres.2024.118298. PubMed

Chen Z-W, Hua Z-L, Guo P. The bioaccumulation and ecotoxicity of co-exposure of per(Poly)Fluoroalkyl substances and polystyrene microplastics to eichhornia crassipes. Water Res. 2024;260:121878. 10.1016/J.Watres.2024.121878. PubMed

Wu S, Tong C, Liu J. Obesogenic effects of six classes of emerging contaminants. J Environ Sci. 2025;151:252–72. 10.1016/J.Jes.2024.03.032. PubMed

Liao J, Sun B, Wang C, Cao Z, Wu Z, An X, Huang X, Lu Y. Uptake and cellular responses of microcystis aeruginosa to pfos in various environmental conditions. Ecotoxicol Environ Safety. 2024;272:116041. 10.1016/J.Ecoenv.2024.116041. PubMed

Li X, Wang Z, Ge Y, Sun H, Zhang L. Comparative stress response assessment of Pfos and its alternatives, F-53b and Obs, in wheat: an insight of toxic mechanisms and relative magnitudes. Ecotoxicol Environ Safety. 2023;263:115333. 10.1016/J.Ecoenv.2023.115333. PubMed

Guo Q, He Z, Liu X, Liu B, Zhang Y. High-throughput non-targeted metabolomics study of the effects of perfluorooctane sulfonate (PFOS) on the metabolic characteristics of A. thaliana leaves. Sci Total Environ. 2020;710:135542. 10.1016/J.Scitotenv.2019.135542. PubMed

Wang S, Zhuang C, Du J, Wu C, You H. The presence of Mwcnts reduces developmental toxicity of Pfos in early life stage of zebrafish. Environ Pollut. 2017;222:201–9. 10.1016/J.Envpol.2016.12.055. PubMed

Lin H, Wu H, Liu F, Yang H, Shen L, Chen J, Zhang X, Zhong Y, Zhang H, Liu Z. Assessing the hepatotoxicity of Pfoa, Pfos, and 6:2 Cl-Pfesa in black-spotted frogs (Rana Nigromaculata) and elucidating potential association with gut microbiota. Environ Pollut. 2022;312:120029. 10.1016/J.Envpol.2022.120029. PubMed

Rayne S, Forest K. Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods. J Environ Sci Health Part A. 2009;44(12):1145–99. PubMed

Vecitis CD, Park H, Cheng J, Mader BT, Hoffmann MR. Treatment technologies for aqueous perfluorooctanesulfonate (Pfos) and perfluorooctanoate (Pfoa). Front Environ Sci Eng China. 2009;3:129–51.

Pramanik BK, Pramanik SK, Suja F. A comparative study of coagulation, granular-and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment. Environ Technol. 2015;36(20):2610–7. PubMed

Deng S, Zhou Q, Yu G, Huang J, Fan Q. Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation. Water Res. 2011;45(4):1774–80. PubMed

Kunacheva C, Fujii S, Tanaka S, Boontanon SK, Poothong S, Wongwatthana T, Shivakoti BR. Perfluorinated compounds contamination in tap water and bottled water in Bangkok, Thailand. J Water Supply: Res Technol- AQUA. 2010;59(5):345–54.

Bao Y, Niu J, Xu Z, Gao D, Shi J, Sun X, Huang Q. Removal of perfluorooctane sulfonate (Pfos) and perfluorooctanoate (Pfoa) from water by coagulation: mechanisms and influencing factors. J Colloid Interface Sci. 2014;434:59–64. PubMed

Hubert M, Meyn T, Hansen MC, Hale SE, Arp HPH. Per-and polyfluoroalkyl substance (PFAS) removal from soil washing water by coagulation and flocculation. Water Res. 2024;249:120888. 10.1016/J.Watres.2023.120888. PubMed

Grgas D, Petrina A, Štefanac T, Bešlo D, Landeka DT. A review: per-and polyfluoroalkyl substances—biological degradation. Toxics. 2023;11(5):446. PubMed PMC

Colosi LM, Pinto RA, Huang Q, Weber WJJ. Peroxidase-mediated degradation of perfluorooctanoic acid. Environ Toxicol Chem: Int J. 2009;28(2):264–71. PubMed

Luo Q, Yan X, Lu J, Huang Q. Perfluorooctanesulfonate degrades in a laccase-mediator system. Environ Sci Technol. 2018;52(18):10617–26. PubMed

Tobimatsu Y, Schuetz M. Lignin polymerization: how do plants manage the chemistry so well? Curr Opin Biotechnol. 2019;56:75–81. PubMed

Chen C, Ma C, Yang X, Gromov M, Tian Y, Demeestere K, Nikiforov A, Van Hulle SW. Degradation of perfluoroalkyl and polyfluoroalkyl substances (pfas) in water by use of a nonthermal plasma-ozonation cascade reactor: role of different processes and reactive species. Chem Eng J. 2024;486:150218.

Fenner A. Is Pfoa a renal carcinogen? Nat Rev Urol. 2020;17(11):602–602. 10.1038/S41585-020-00388-3. PubMed

Li J, Li X, Da Y, Yu J, Long B, Zhang P, Bakker C, McCarl BA, Yuan JS, Dai SY. Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework. Nat Commun. 2022;13(1):4368. 10.1038/S41467-022-31881-5. PubMed PMC

Wang L-Q, Liu T, Yang S, Sun L, Zhao Z-Y, Li L-Y, She Y-C, Zheng Y-Y, Ye X-Y, Bao Q. Perfluoroalkyl substance pollutants activate the innate immune system through the Aim2 inflammasome. Nat Commun. 2021;12(1):2915. PubMed PMC

Sonne C, Bank MS, Jenssen BM, Cieseielski TM, Rinklebe J, Lam SS, Hansen M, Bossi R, Gustavson K, Dietz R. Pfas pollution threatens ecosystems worldwide. Science. 2023;379(6635):887–8. PubMed

López-Vázquez J, Santos CS, Montes R, Rodil R, Quintana JB, Gäbler J, Schäfer L, Moreira FC, Vilar VJ. Insights into the application of the anodic oxidation process for the removal of per-and polyfluoroalkyl substances (PFAS) in water matrices. Chem Eng J. 2024;482:148925. 10.1016/J.Cej.2024.148925.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...