Intercropping of non-leguminous crops improves soil biochemistry and crop productivity: a meta-analysis

. 2025 Feb 28 ; () : . [epub] 20250228

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40022473

Grantová podpora
101034371 H2020 Marie Skłodowska-Curie Actions
101090267 HORIZON EUROPE Marie Sklodowska-Curie Actions

Plant species-rich systems tend to be more productive than depauperate ones. In agroecosystems, increasing crop plant diversity by including legumes often increases soil nitrogen (N) and improves soil fertility; however, such generality in outcomes of non-leguminous crop mixture is unknown. Here, through a meta-analysis of 174 individual cases, we explored the current global research trend of intercropping of exclusively non-leguminous crops (ICnl) and quantified its effect on agroecosystem productivity key metrics, for example crop plant health, soil chemistry, and microbial community under diverse experimental conditions. ICnl increased plant biomass and disease suppression and provided a notable yield advantage over monocultures. In addition to phosphorus and potassium, ICnl also increased plant-available soil N, which, along with increased soil microbial abundance, was positively associated with increased soil organic matter. These positive effects were more pronounced in experiments with long duration (> 1 yr), field soil conditions, and soil pH > 7. ICnl improves several crop productivity metrics, which could augment sustainable crop production, particularly when practiced for a long duration and in alkaline soils.

Zobrazit více v PubMed

Altieri M, Nicholls C. 2004. Plant diversity and insect stability in agroecosystems. In: Altieri M, Nicholls C, eds. Biodiversity and pest management in agroecosystems. Boca Raton, FL, USA: CRC Press, 29–39.

Anderson RL. 2017. Improving resource‐use‐efficiency with no‐till and crop diversity. Renewable Agriculture and Food Systems 32: 105–108.

Angst G, Mueller KE, Nierop KGJ, Simpson MJ. 2021. Plant‐ or microbial‐derived? A review on the molecular composition of stabilized soil organic matter. Soil Biology and Biochemistry 156: 108189.

Assefa Y, Staggenborg SA, Prasad VPV. 2010. Grain sorghum water requirement and responses to drought stress: a review. Crop Management 9: 1–11.

Bai Y‐C, Li B‐X, Xu C‐Y, Raza M, Wang Q, Wang Q‐Z, Fu Y‐N, Hu J‐Y, Imoulan A, Hussain M et al. 2022. Intercropping walnut and tea: effects on soil nutrients, enzyme activity, and microbial communities. Frontiers in Microbiology 13: 852342.

Bazydlo LAL, Needham M, Harris NS. 2014. Calcium, magnesium, and phosphate. Laboratory Medicine 45: e44–e50.

Becker C Berthomé R Delavault P Flutre T Fréville H Gibot‐Leclerc S Corre V L Morel J‐B Moutier N Muños S Le V. Corre C. Richard‐Molard J. Westwood P.‐E. Courty A. Saint Germain G. Louarn F. Roux 2023 The ecologically relevant genetics of plant–plant interactions Trends in Plant Science 28 31 42

Ben‐chuan Z, Ying Z, Ping C, Xiao‐na Z, Qing D, Huan Y, Xiao‐chun W, Feng Y, Te X, Long L et al. 2022. Maize–legume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability. Journal of Integrative Agriculture 21: 1755–1771.

Benitez M‐S, Ewing PM, Osborne SL, Lehman RM. 2021. Rhizosphere microbial communities explain positive effects of diverse crop rotations on maize and soybean performance. Soil Biology and Biochemistry 159: 108309.

Borenstein M, Higgins JPT, Hedges LV, Rothstein HR. 2017. Basics of meta‐analysis: I2 is not an absolute measure of heterogeneity. Research Synthesis Methods 8: 5–18.

Brooker RW, Bennett AE, Cong W‐F, Daniell TJ, George TS, Hallett PD, Hawes C, Iannetta PPM, Jones HG, Karley AJ et al. 2015. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist 206: 107–117.

Brun P, Zimmermann NE, Graham CH, Lavergne S, Pellissier L, Münkemüller T, Thuiller W. 2019. The productivity‐biodiversity relationship varies across diversity dimensions. Nature Communications 10: 5691.

Camargo AP, de Souza RSC, Jose J, Gerhardt IR, Dante RA, Mukherjee S, Huntemann M, Kyrpides NC, Carazzolle MF, Arruda P. 2023. Plant microbiomes harbor potential to promote nutrient turnover in impoverished substrates of a Brazilian biodiversity hotspot. The ISME Journal 17: 354–370.

Cao Q, Liu B, Wu J, Zhang X, Ma W, Cui D. 2023. Soil organic carbon fraction accumulation and bacterial characteristics in curtilage soil: effects of land conversion and land use. PLoS ONE 18: e0283802.

Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA et al. 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.

Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, Balvanera P, O'Connor MI, Gonzalez A. 2011. The functional role of producer diversity in ecosystems. American Journal of Botany 98(3): 572–592.

Chai Q, Nemecek T, Liang C, Zhao C, Yu A, Coulter JA, Wang Y, Hu F, Wang L, Siddique KHMY et al. 2021. Integrated farming with intercropping increases food production while reducing environmental footprint. Proceedings of the National Academy of Sciences, USA 118: e210638211838.

Chen H, Manning AK, Dupuis J. 2012. A method of moments estimator for random effect multivariate meta‐analysis. Biometrics 68: 1278–1284.

Chen X, Chen HYH, Chang SX. 2022. Meta‐analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems. Nature Ecology & Evolution 6: 1112–1121.

Cong W‐F, Hoffland E, Li L, Janssen BH, van der Werf W. 2015a. Intercropping affects the rate of decomposition of soil organic matter and root litter. Plant and Soil 391: 399–411.

Cong W‐F, Hoffland E, Li L, Six J, Sun J‐H, Bao X‐G, Zhang F‐S, Van Der Werf W. 2015b. Intercropping enhances soil carbon and nitrogen. Global Change Biology 21: 1715–1726.

Daryanto S, Wang L, Gilhooly WP III, Jacinthe P‐A. 2019. Nitrogen preference across generations under changing ammonium nitrate ratios. Journal of Plant Ecology 12: 235–244.

Deeks JJ, Higgins JP. 2010. Statistical algorithms in Review Manager 5. [WWW document] URL https://training.cochrane.org/handbook/current/statistical‐methods‐revman5. [accessed 24 September, 2023].

Delaux P‐M, Schornack S. 2021. Plant evolution driven by interactions with symbiotic and pathogenic microbes. Science 371: eaba6605.

Dick WA, Cheng L, Wang P. 2000. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biology and Biochemistry 32: 1915–1919.

Dotaniya ML, Meena VD. 2015. Rhizosphere effect on nutrient availability in soil and its uptake by plants: A review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 85: 1–12.

Drevon D, Fursa SR, Malcolm AL. 2017. Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behavior Modification 41: 323–339.

Durán P, Thiergart T, Garrido‐Oter R, Agler M, Kemen E, Schulze‐Lefert P, Hacquard S. 2018. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175: 973–983.

Duval S, Tweedie R. 2000. Trim and fill: a simple funnel‐plot–based method of testing and adjusting for publication bias in meta‐analysis. Biometrics 56: 455–463.

Eisenhauer N, Schulz W, Scheu S, Jousset A. 2013. Niche dimensionality links biodiversity and invasibility of microbial communities. Functional Ecology 27: 282–288.

Enesi RO, Dyck M, Chang S, Thilakarathna MS, Fan X, Strelkov S, Gorim LY. 2023. Liming remediates soil acidity and improves crop yield and profitability – a meta‐analysis. Frontiers in Agronomy 5: 1194896.

Fu Y, Tang X, Sun T, Lin L, Wu L, Zhang T, Gong Y, Li Y, Wu H, Xiong J et al. 2024. Rare taxa mediate microbial carbon and nutrient limitation in the rhizosphere and bulk soil under sugarcane–peanut intercropping systems. Frontiers in Microbiology 15: 1403338.

Futschik A, Taus T, Zehetmayer S. 2019. An omnibus test for the global null hypothesis. Statistical Methods in Medical Research 28: 2292–2304.

Gao D, Pan X, Khashi u Rahman M, Zhou X, Wu F. 2021. Common mycorrhizal networks benefit to the asymmetric interspecific facilitation via K exchange in an agricultural intercropping system. Biology and Fertility of Soils 57: 959–971.

Gao X, Li K, Ma Z, Zou H, Jin H, Wang J. 2020. Cucumber Fusarium wilt resistance induced by intercropping with celery differs from that induced by the cucumber genotype and is related to sulfur‐containing allelochemicals. Scientia Horticulturae 271: 109475.

Hacker N, Ebeling A, Gessler A, Gleixner G, González Macé O, de Kroon H, Lange M, Mommer L, Eisenhauer N, Ravenek J et al. 2015. Plant diversity shapes microbe‐rhizosphere effects on P mobilisation from organic matter in soil. Ecology Letters 18: 1356–1365.

He M, Meng L, Chen S, Dan X, Zhao C, He X, Cai Z, Zhang J, Müller C. 2022. Maize seedlings prefer NO3− over NH4+ independent of pH changes. Journal of Soil Science and Plant Nutrition 22: 2847–2856.

Hedges LV, Gurevitch J, Curtis PS. 1999. The meta‐analysis of response ratios in experimental ecology. Ecology 80: 1150–1156.

Hedges LV, Vevea JL. 1998. Fixed‐ and random‐effects models in meta‐analysis. Psychological Methods 3: 486–504.

Higgins JPT, Thompson SG, Deeks JJ, Altman DG. 2003. Measuring inconsistency in meta‐analyses. BMJ 327(7414): 557–560.

Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen J, Tang X, Zhang F. 2011. P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiology 156: 1078–1086.

Hirsch AM, Lum MR, Downie JA. 2001. What makes the rhizobia‐legume symbiosis so special? Plant Physiology 127: 1484–1492.

Horton P, Long SP, Smith P, Banwart SA, Beerling DJ. 2021. Technologies to deliver food and climate security through agriculture. Nature Plants 7: 250–255.

Johan PD, Ahmed OH, Omar L, Hasbullah NA. 2021. Phosphorus transformation in soils following co‐application of charcoal and wood ash. Agronomy 11: 2010.

Jops K, O'Dwyer JP. 2023. Life history complementarity and the maintenance of biodiversity. Nature 618: 986–991.

Kallenbach CM, Frey SD, Grandy AS. 2016. Direct evidence for microbial‐derived soil organic matter formation and its ecophysiological controls. Nature Communications 7: 13630.

Keesing F, Ostfeld RS. 2021. Dilution effects in disease ecology. Ecology Letters 24: 2490–2505.

Khashi u Rahman M, Wang X, Gao D, Zhou X, Wu F. 2021. Root exudates increase phosphorus availability in the tomato/potato onion intercropping system. Plant and Soil 464: 45–62.

Khashi u Rahman M, Zhou X, Wu F. 2019. The role of root exudates, CMNs, and VOCs in plant–plant interaction. Journal of Plant Interactions 14: 630–636.

Kong C‐H, Zhang S‐Z, Li Y‐H, Xia Z‐C, Yang X‐F, Meiners SJ, Wang P. 2018. Plant neighbor detection and allelochemical response are driven by root‐secreted signaling chemicals. Nature Communications 9: 3867.

Labouyrie M, Ballabio C, Romero F, Panagos P, Jones A, Schmid MW, Mikryukov V, Dulya O, Tedersoo L, Bahram M et al. 2023. Patterns in soil microbial diversity across Europe. Nature Communications 14(1): 3311.

Ladha JK, Peoples MB, Reddy PM, Biswas JC, Bennett A, Jat ML, Krupnik TJ. 2022. Biological nitrogen fixation and prospects for ecological intensification in cereal‐based cropping systems. Field Crops Research 283: 108541.

Li B, Li Y‐Y, Wu H‐M, Zhang F‐F, Li C‐J, Li X‐X, Lambers H, Li L. 2016. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences, USA 113: 6496–6501.

Li C, Stomph T‐J, Makowski D, Li H, Zhang C, Zhang F, van der Werf W. 2023. The productive performance of intercropping. Proceedings of the National Academy of Sciences, USA 120: e2201886120.

Li L, Li S‐M, Sun J‐H, Zhou L‐L, Bao X‐G, Zhang H‐G, Zhang F‐S. 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus‐deficient soils. Proceedings of the National Academy of Sciences, USA 104: 11192–11196.

Li L, Tilman D, Lambers H, Zhang F. 2014. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytologist 203: 63–69.

Li S, Wu F. 2018. Diversity and co‐occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Frontiers in Microbiology 9: 1521.

Li X‐F, Wang Z‐G, Bao X‐G, Sun J‐H, Yang S‐C, Wang P, Wang C‐B, Wu J‐P, Liu X‐R, Tian X‐L et al. 2021. Long‐term increased grain yield and soil fertility from intercropping. Nature Sustainability 4: 943–950.

Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze E‐D, McGuire AD, Bozzato F, Pretzsch H et al. 2016. Positive biodiversity‐productivity relationship predominant in global forests. Science 354: aaf8957.

Liu M, Qiao N, Zhang Q, Xu X. 2018. Cropping regimes affect NO3− versus NH4+ uptake by Zea mays and Glycine max. Plant and Soil 426: 241–251.

Liu X, Tan N, Zhou G, Zhang D, Zhang Q, Liu S, Chu G, Liu J. 2021. Plant diversity and species turnover co‐regulate soil nitrogen and phosphorus availability in Dinghushan forests, southern China. Plant and Soil 464: 257–272.

Louarn G, Barillot R, Combes D, Escobar‐Gutiérrez A. 2020. Towards intercrop ideotypes: non‐random trait assembly can promote overyielding and stability of species proportion in simulated legume‐based mixtures. Annals of Botany 126: 671–685.

Macaskill P, Walter SD, Irwig L. 2001. A comparison of methods to detect publication bias in meta‐analysis. Statistics in Medicine 20: 641–654.

Maddhesiya PK, Singh K, Singh RP. 2021. Effects of perennial aromatic grass species richness and microbial consortium on soil properties of marginal lands and on biomass production. Land Degradation & Development 32: 1008–1021.

Marschner P, Crowley D, Rengel Z. 2011. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis – model and research methods. Soil Biology and Biochemistry 43: 883–894.

Martinez CME. 2023. Plant–microbe interactions: mining heritable root‐associated microbiota across environments. Current Biology 33(10): R413–R415.

Martin‐Guay M‐O, Paquette A, Dupras J, Rivest D. 2018. The new Green Revolution: sustainable intensification of agriculture by intercropping. Science of the Total Environment 615: 767–772.

McDaniel MD, Tiemann LK, Grandy AS. 2014. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta‐analysis. Ecological Applications 24: 560–570.

Miao W, Ma S, Guo Z, Sun H, Wang X, Lyu Y, Wang X. 2022. Effects of biodiversity, stand factors and functional identity on biomass and productivity during the restoration of subtropical forests in Central China. Journal of Plant Ecology 15: 385–398.

Mori AS, Dee LE, Gonzalez A, Ohashi H, Cowles J, Wright AJ, Loreau M, Hautier Y, Newbold T, Reich PB et al. 2021. Biodiversity–productivity relationships are key to nature‐based climate solutions. Nature Climate Change 11: 543–550.

Muler AL, Oliveira RS, Lambers H, Veneklaas EJ. 2014. Does cluster‐root activity benefit nutrient uptake and growth of co‐existing species? Oecologia 174: 23–31.

Neina D. 2019. The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science 2019: 5794869.

Newton AC. 2016. Exploitation of diversity within crops—the key to disease tolerance? Frontiers in Plant Science 7: 665.

Nie CR, Feng Y, Cheng XH, Cai ZQ. 2021. Intercropping with Chinese leek decreased Meloidogyne javanica population and shifted microbial community structure in Sacha Inchi plantation. The Journal of Agricultural Science 159: 404–413.

Oelmann Y, Lange M, Leimer S, Roscher C, Aburto F, Alt F, Bange N, Berner D, Boch S, Boeddinghaus RS et al. 2021. Above‐ and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nature Communications 12: 4431.

Pélissier R, Violle C, Morel J‐B. 2021. Plant immunity: good fences make good neighbors? Current Opinion in Plant Biology 62: 102045.

Peng Z, Guo X, Xiang Z, Liu D, Yu K, Sun K, Yan B, Wang S, Kang C, Xu Y et al. 2022. Maize intercropping enriches plant growth‐promoting rhizobacteria and promotes both the growth and volatile oil concentration of Atractylodes lancea. Frontiers in Plant Science 13: 1029722.

Poorter H, Fiorani F, Pieruschka R, Wojciechowski T, van der Putten WH, Kleyer M, Schurr U, Postma J. 2016. Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytologist 212: 838–855.

Prommer J, Walker TWN, Wanek W, Braun J, Zezula D, Hu Y, Hofhansl F, Richter A. 2020. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Global Change Biology 26: 669–681.

Qu X, Liao Y, Pan C, Li X. 2024. Positive effects of intercropping on soil phosphatase activity depend on the application scenario: a meta‐analysis. Soil and Tillage Research 235: 105914.

Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter‐Braun P. 2019. Systems biology of plant‐microbiome interactions. Molecular Plant 12: 804–821.

Roscoe R, Vasconcellos CA, Furtini‐Neto AE, Guedes GAA, Fernandes LA. 2000. Urease activity and its relation to soil organic matter, microbial biomass nitrogen and urea‐nitrogen assimilation by maize in a Brazilian Oxisol under no‐tillage and tillage systems. Biology and Fertility of Soils 32: 52–59.

Sánchez‐Meca J, Marín‐Martínez F, Chacón‐Moscoso S. 2003. Effect‐size indices for dichotomized outcomes in meta‐analysis. Psychological Methods 8: 448–467.

Schünemann HJ, Vist GE, Higgins JP, Santesso N, Deeks JJ, Glasziou P, Akl EA, Guyatt GH, Group on behalf of the Cochrane GRADEing Methods Group. 2019. Interpreting results and drawing conclusions. In: Higgins JPT, ed. Cochrane handbook for systematic reviews of interventions. Hoboken, NJ, USA: John Wiley & Sons, 403–431.

Schwerdtner U, Lacher U, Spohn M. 2022. Lupin causes maize to increase organic acid exudation and phosphorus concentration in intercropping. Journal of Sustainable Agriculture and Environment 1: 191–202.

Singh AP, Fridman Y, Holland N, Ackerman‐Lavert M, Zananiri R, Jaillais Y, Henn A, Savaldi‐Goldstein S. 2018. Interdependent nutrient availability and steroid hormone signals facilitate root growth plasticity. Developmental cell 46:59–72.

Sun Y, Chen L, Zhang S, Miao Y, Zhang Y, Li Z, Zhao J, Yu L, Zhang J, Qin X et al. 2022. Plant interaction patterns shape the soil microbial community and nutrient cycling in different intercropping scenarios of aromatic plant species. Frontiers in Microbiology 13: 888789.

Tang X, Zhang C, Yu Y, Shen J, van der Werf W, Zhang F. 2021. Intercropping legumes and cereals increases phosphorus use efficiency; a meta‐analysis. Plant and Soil 460: 89–104.

Thornton A, Lee P. 2000. Publication bias in meta‐analysis: its causes and consequences. Journal of Clinical Epidemiology 53: 207–216.

Vico G, Manzoni S, Nkurunziza L, Murphy K, Weih M. 2016. Trade‐offs between seed output and life span – a quantitative comparison of traits between annual and perennial congeneric species. New Phytologist 209: 104–114.

Wen Z, White PJ, Shen J, Lambers H. 2022. Linking root exudation to belowground economic traits for resource acquisition. New Phytologist 233: 1620–1635.

Williams A, Birt HWG, Raghavendra A, Dennis PG. 2023. Cropping system diversification influences soil microbial diversity in subtropical dryland farming systems. Microbial Ecology 85: 1473–1484.

Wu T, Qin Y, Li M. 2021. Intercropping of tea (Camellia sinensis L.) and Chinese chestnut: variation in the structure of rhizosphere bacterial communities. Journal of Soil Science and Plant Nutrition 21: 2178–2190.

Yang Z, Zhang Y, Wang Y, Zhang H, Zhu Q, Yan B, Fei J, Xiangmin R, Peng J, Luo G. 2022. Intercropping regulation of soil phosphorus composition and microbially‐driven dynamics facilitates maize phosphorus uptake and productivity improvement. Field Crops Research 287: 108666.

Zhang C‐B, Wang J, Liu W‐L, Zhu S‐X, Liu D, Chang SX, Chang J, Ge Y. 2010. Effects of plant diversity on nutrient retention and enzyme activities in a full‐scale constructed wetland. Bioresource Technology 101: 1686–1692.

Zhang M‐M, Wang N, Hu Y‐B, Sun G‐Y. 2018. Changes in soil physicochemical properties and soil bacterial community in mulberry (Morus alba L.)/alfalfa (Medicago sativa L.) intercropping system. Microbiology Open 7: e00555.

Zheng L‐T, Chen HYH, Biswas SR, Bao D‐F, Fang X‐C, Abdullah M, Yan E‐R. 2021. Diversity and identity of economics traits determine the extent of tree mixture effects on ecosystem productivity. Journal of Ecology 109: 1898–1908.

Zhou X, Zhang J, Khashi u Rahman M, Gao D, Wei Z, Wu F, Dini‐Andreote F. 2023. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Molecular Plant 16: 849–864.

Zhou Z, Wang C, Luo Y. 2020. Meta‐analysis of the impacts of global change factors on soil microbial diversity and functionality. Nature Communications 11: 3072.

Zustovi R, Landschoot S, Dewitte K, Verlinden G, Dubey R, Maenhout S, Haesaert G. 2024. Intercropping indices evaluation on grain legume‐small grain cereals mixture: a critical meta‐analysis review. Agronomy for Sustainable Development 44: 5.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...