Advanced methodology for maximum torque point tracking of hybrid excitation PMSM for EVs

. 2025 Mar 05 ; 15 (1) : 7707. [epub] 20250305

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40044798

Grantová podpora
101139527 European Union's Horizon Mission Programme
101139527 European Union's Horizon Mission Programme

Odkazy

PubMed 40044798
PubMed Central PMC11882846
DOI 10.1038/s41598-025-92466-y
PII: 10.1038/s41598-025-92466-y
Knihovny.cz E-zdroje

This manuscript presents an innovative control strategy for the Hybrid Excitation Permanent Magnet Synchronous Motor (HEPMSM) designed for electric vehicle (EV) applications. The strategy combines Maximum Torque Point Tracking (MTPT) and Maximum Torque Per Ampere (MTPA) techniques to track the ideal torque-speed profile, ensuring maximum torque at low speeds for starting and climbing, and high power at higher speeds for cruising. A novel unidirectional excitation current method is proposed to replace traditional bidirectional field current control, eliminating the risk of permanent magnet demagnetization, reducing copper losses, and increasing efficiency. This approach extends the constant power (CP) region by a 4.2:1 ratio. The manuscript also introduces a detailed mathematical model, considering both iron core losses and their impact on the EV profile. Additionally, the Multi-Objective Ant Lion Optimizer (MOALO) algorithm is used in two stages: first to optimize the hybridization ratio (HR) and base speed (Nb), and second to analyze the effect of varying the hybridization ratio while maintaining constrained output power. The proposed strategy is validated through MATLAB simulations, demonstrating its effectiveness in achieving high acceleration, efficiency, and reliability for EV applications.

Zobrazit více v PubMed

de Santiago, J. et al. Electrical motor drivelines in commercial all-electric vehicles: A review. IEEE Trans. Veh. Technol.61(2), 475–484. 10.1109/TVT.2011.2177873 (2012).

Mom, G. The electric vehicle: Technology and expectations in the automobile age (JHU Press, 2013).

Electric and hybrid vehicles : Design fundamentals. CRC Press 2021 10.1201/9780429490927

Un-Noor, F., Padmanaban, S., Mihet-Popa, L., Mollah, M. N. & Hossain, E. A comprehensive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development. Energies10, 8. 10.3390/en10081217 (2017).

M. Kebriaei, A. H. Niasar, & B. Asaei, Hybrid electric vehicles: An overview In 2015 International Conference on Connected Vehicles and Expo (ICCVE) 299–305 10.1109/ICCVE.2015.84. (2015)

A. M. Lulhe & T. N. Date, A technology review paper for drives used in electrical vehicle (EV) & hybrid electrical vehicles (HEV) In 2015 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT) 632–636 10.1109/ICCICCT.2015.7475355(2015)

A. Loganayaki & R. B. Kumar, Permanent magnet synchronous motor for electric vehicle applications In 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS) 1064–1069 10.1109/ICACCS.2019.8728442 (2019)

Nadia, E. A., Mohamed, E. A. & Mahmoud, E. Assessment of proposed maximum power point tracking–unity power factor algorithms for optimum operation permanent magnet synchronous generator–based wind turbine. Wind Eng.45(2), 381–399. 10.1177/0309524X20901624 (2021).

Gang, Z. & Wang, H. J. Comparison of control methods of permanent magnet synchronous motor in electric vehicle. Appl. Mech. Mater.556–562, 1396–1399. 10.4028/www.scientific.net/AMM.556-562.1396 (2014).

Zhang, F. et al. A new on-board charging-driving integrated topology for V2G technology. World Electr. Veh. J.12, 4. 10.3390/wevj12040231 (2021).

Lu, R., Liu, Z., Liu, X., Sun, B. & Liang, J. “Investigation of a novel intensifying-flux hybrid excited permanent magnet machine for electric vehicles”, COMPEL. Int J. Comput. Math. Electr. Electron. Eng.43(5), 993–1006. 10.1108/COMPEL-11-2023-0572 (2024).

Elymany, M. M., Enany, M. A. & Elsonbaty, N. A. Hybrid optimized-ANFIS based MPPT for hybrid microgrid using zebra optimization algorithm and artificial gorilla troops optimizer. Energy Convers. Manag.299, 117809. 10.1016/j.enconman.2023.117809 (2024).

M. Hendijanizadeh, S. M. Sharkh, & A. A. Qazalbash, Comparison of PM and hybrid excited machines for marine vessel hybrid-electric propulsion In 2018 XIII International Conference on Electrical Machines (ICEM) 602–608. 10.1109/ICELMACH.2018.8507207(2018)

Elsonbaty, N. A., Enany, M. A. & Hassanin, M. I. An efficient vector control policy for EV-hybrid excited permanent-magnet synchronous motor. World Electr. Vehicle J.11(2), 42. 10.3390/wevj11020042 (2020).

Zhu, Z. Q. & Cai, S. Hybrid excited permanent magnet machines for electric and hybrid electric vehicles. CES Trans. Electr. Mach. Syst.3(3), 233–247. 10.30941/CESTEMS.2019.00032 (2019).

Wang, Y. & Deng, Z. Hybrid excitation topologies and control strategies of stator permanent magnet machines for DC power system. IEEE Trans. Ind. Electron.59(12), 4601–4616. 10.1109/TIE.2012.2183842 (2012).

Mingming, H. et al. Flux-weakening control methods for hybrid excitation synchronous motor. Arch. Electr. Eng.64(3), 427–439 (2015).

Kupiec, E. & Przyborowski, W. Magnetic equivalent circuit model for unipolar hybrid excitation synchronous machine. Arch. Electr. Eng.64(1), 107–117 (2015).

Zhang, Z., Liu, Y., Tian, B. & Wang, W. Investigation and implementation of a new hybrid excitation synchronous machine drive system. IET Electr. Power Appl.11(4), 487–494. 10.1049/iet-epa.2016.0542 (2017).

Asfirane, S., Hlioui, S., Amara, Y. & Gabsi, M. Study of a hybrid excitation synchronous machine: modeling and experimental validation. Math. & Comput. Appl.24(2), 34. 10.3390/mca24020034 (2019).

O. Wallmark, On control of permanent-magnet synchronous motors in hybrid-electric vehicle applications 2004

Paplicki, P. A novel rotor design for a hybrid excited synchronous machine. Arch. Electr. Eng.66(1), 29–40 (2017).

Xu, G., Liu, G., Du, X. & Bian, F. A novel PM motor with hybrid PM excitation and asymmetric rotor structure for high torque performance. AIP Adv.7(5), 056671. 10.1063/1.4978400 (2017). PubMed PMC

Cinti, L. & Bianchi, N. Hybrid-excited PM motor for electric vehicle. energies14, 4. 10.3390/en14040916 (2021).

Chau, K. T., Chan, C. C. & Liu, C. Overview of permanent-magnet brushless drives for electric and hybrid electric vehicles. IEEE Trans. Ind. Electron.55(6), 2246–2257. 10.1109/TIE.2008.918403 (2008).

Mohammadi, A. S. & Trovão, J. P. F. System-level optimization of hybrid excitation synchronous machines for a three-wheel electric vehicle. IEEE Trans. Transp. Electrification6(2), 690–702. 10.1109/TTE.2020.2992008 (2020).

Chu, J., Cheng, H., Sun, J., Peng, C. & Hu, Y. Multi-objective optimization design of hybrid excitation double stator permanent magnet synchronous machine. IEEE Trans. Energy Convers.38(4), 2364–2375. 10.1109/TEC.2023.3279934 (2023).

Liu, Y., Zhang, Z. & Zhang, X. Design and optimization of hybrid excitation synchronous machines with magnetic shunting rotor for electric vehicle traction applications. IEEE Trans. Ind. Appl.53(6), 5252–5261. 10.1109/TIA.2017.2720671 (2017).

Guo, Q. et al. Design and implementation of a loss optimization control for electric vehicle in-wheel permanent-magnet synchronous motor direct drive system. Appl. Energy204, 1317–1332. 10.1016/j.apenergy.2017.05.023 (2017).

Kano, Y. Design optimization of brushless synchronous machines with wound-field excitation for hybrid electric vehicles. IEEE Energy Convers. Congr. & Expos. (ECCE)2015, 2769–2775. 10.1109/ECCE.2015.7310048 (2015).

Sun, X., Jin, Z., Cai, Y., Yang, Z. & Chen, L. Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine. IEEE Trans. Power Electron.35(12), 13631–13640. 10.1109/TPEL.2020.2994254 (2020).

Shaier, A. A. et al. An efficient and resilient energy management strategy for hybrid microgrids inspired by the honey badger’s behavior. Results Eng.24, 103161. 10.1016/j.rineng.2024.103161 (2024).

Elsonbaty, N. A., Enany, M. A. & Elymany, M. M. Hybrid permanent magnet synchronous generator as an efficient wind energy transducer for modern wind turbines. Wind Eng.48(6), 1203–1223. 10.1177/0309524X241256957 (2024).

M. Bonisławski, M. Hołub, and R. Pałka, Minimization of machine and inverter losses in hybrid excited machines for electric vehicles In ICMEPE Conference, 2016 Accessed Jan 19 2025. http://www.aedie.org/papers/15716-bonislawski.pdf

Kahraman, H. T. Metaheuristic linear modeling technique for estimating the excitation current of a synchronous motor. Turk. J. Electr. Eng. Comput. Sci.22(6), 1637–1652 (2014).

Gope, D. & Goel, S. K. Design optimization of permanent magnet synchronous motor using Taguchi method and experimental validation. Int. J. Emerg. Electr. Power Syst.22(1), 9–20. 10.1515/ijeeps-2020-0169 (2021).

Mörée, G. & Leijon, M. Overview of hybrid excitation in electrical machines. Energies15, 19. 10.3390/en15197254 (2022).

Wardach, M., Palka, R., Paplicki, P., Prajzendanc, P. & Zarebski, T. Modern hybrid excited electric machines. Energies13, 22. 10.3390/en13225910 (2020).

Mirjalili, S., Jangir, P. & Saremi, S. Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell.46(1), 79–95. 10.1007/s10489-016-0825-8 (2017).

R. Mbayed, G. Salloum, L. Vido, E. Monmasson, and M. Gabsi, Hybrid excitation synchronous machine control in electric vehicle application with copper losses minimization In 6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012) 1–6 10.1049/cp.2012.0252 (2012)

R. Mbayed, L. Vido, G. Salloum, E. Monmasson, & M. Gabsi, Effect of iron losses on the model and control of a hybrid excitation synchronous generator In 2011 IEEE International Electric Machines & Drives Conference (IEMDC) 971–976 10.1109/IEMDC.2011.5994948(2011)

Shaier, A. A., Elymany, M. M., Enany, M. A. & Elsonbaty, N. A. Multi-objective optimization and algorithmic evaluation for EMS in a HRES integrating PV, wind, and backup storage. Sci. Rep.15(1), 1147. 10.1038/s41598-024-84227-0 (2025). PubMed PMC

Mouassa, S. & Bouktir, T. Multi-objective ant lion optimization algorithm to solve large-scale multi-objective optimal reactive power dispatch problem, COMPEL. Int. J. Comput. Math. Electr. Electron. Eng.38(1), 304–324. 10.1108/COMPEL-05-2018-0208 (2018).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...