How pore formation in complex biological membranes is governed by lipid composition, mechanics, and lateral sorting

. 2025 Mar ; 4 (3) : pgaf033. [epub] 20250221

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40046002

The primary function of biological membranes is to enable compartmentalization among cells and organelles. Loss of integrity by the formation of membrane pores would trigger uncontrolled depolarization or influx of toxic compounds, posing a fatal threat to living cells. How the lipid complexity of biological membranes enables mechanical stability against pore formation while, simultaneously, allowing for ongoing membrane remodeling is largely enigmatic. We performed molecular dynamics simulations of eight complex lipid membranes including the plasma membrane and membranes of the organelles endoplasmic reticulum, Golgi, lysosome, and mitochondrion. To quantify the mechanical stability of these membranes, we computed the free energy of transmembrane pore nucleation as well as the line tension of the rim of open pores. Our simulations reveal that complex biological membranes are remarkably stable, however, with the plasma membrane standing out as exceptionally stable, which aligns with its crucial role as a protective layer. We observe that sterol content is a key regulator for biomembrane stability, and that lateral sorting among lipid mixtures influences the energetics of membrane pores. A comparison of 25 model membranes with varying sterol content, tail length, tail saturation, and head group type shows that the pore nucleation free energy is mostly associated with the lipid tilt modulus, whereas the line tension along the pore rim is determined by the lipid intrinsic curvature. Together, our study provides an atomistic and energetic view on the role of lipid complexity in biomembrane stability.

Zobrazit více v PubMed

Shevchenko  A, Simons  K. 2010. Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol. 11(8):593–598. PubMed

Van Meer  G, Voelker  DR, Feigenson  GW. 2008. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 9(2):112–124. PubMed PMC

Devaux  PF. 1991. Static and dynamic lipid asymmetry in cell membranes. Biochemistry. 30(5):1163–1173. PubMed

Op Den Kap  JAF. 1979. Lipid asymmetry in membranes. Ann Rev Biochem. 48(1):47–71. PubMed

Peraro  MD, Van Der Goot  FG. 2016. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol. 14(2):77–92. PubMed

Brogden  KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?  Nat Rev Microbiol. 3(3):238–250. PubMed

Flores-Romero  H, Ros  U, Garcia-Saez  AJ. 2020. Pore formation in regulated cell death. EMBO J. 39(23):e105753. PubMed PMC

Chabanon  M, Ho  JC, Liedberg  B, Parikh  AN, Rangamani  P. 2017. Pulsatile lipid vesicles under osmotic stress. Biophys J. 112(8):1682–1691. PubMed PMC

Dias  C, Nylandsted  J. 2021. Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discov. 7(1):4. PubMed PMC

Abidor  IG, et al.  1979. Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg. 6(1):37–52.

Kotnik  T, et al.  2015. Electroporation-based applications in biotechnology. Trends Biotechnol. 33(8):480–488. PubMed

Eremchev  M, et al.  2023. Passive transport of Ca2+ ions through lipid bilayers imaged by widefield second harmonic microscopy. Biophys J. 122(4):624–631. PubMed PMC

Roesel  D, Eremchev  M, Poojari  CS, Hub  JS, Roke  S. 2022. Ion-induced transient potential fluctuations facilitate pore formation and cation transport through lipid membranes. J Am Chem Soc. 144(51):23352–23357. PubMed PMC

Sengel  JT, Wallace  MI. 2016. Imaging the dynamics of individual electropores. PNAS. 113(19):5281–5286. PubMed PMC

Kotnik  T, Rems  L, Tarek  M, Miklavčič  D. 2019. Membrane electroporation and electropermeabilization: mechanisms and models. Annu Rev Biophys. 48:63–91. PubMed

Bennett  WD, Tieleman  DP. 2014. The importance of membrane defects lessons from simulations. Acc Chem Res. 47(8):2244–2251. PubMed

Bubnis  G, Grubmüller  H. 2020. Sequential water and headgroup merger: membrane poration paths and energetics from md simulations. Biophys J. 119(12):2418–2430. PubMed PMC

Akimov  SA, et al.  2017. Pore formation in lipid membrane II: energy landscape under external stress. Sci Rep. 7(1):12509. PubMed PMC

Awasthi  N, Hub  JS. 2016. Simulations of pore formation in lipid membranes: reaction coordinates, convergence, hysteresis, and finite-size effects. J Chem Theory Comput. 12(7):3261–3269. PubMed

Kasparyan  G, Hub  JS. 2024. Molecular simulations reveal the free energy landscape and transition state of membrane electroporation. Phys Rev Lett. 132(14):148401. PubMed

Wohlert  J, Den Otter  WK, Edholm  O, Briels  WJ. 2006. Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations. J Chem Phys. 124(15):154905. PubMed

Bennett  WD, Sapay  N, Tieleman  DP. 2014. Atomistic simulations of pore formation and closure in lipid bilayers. Biophys J. 106(1):210–219. PubMed PMC

Evans  E, Heinrich  V, Ludwig  F, Rawicz  W. 2003. Dynamic tension spectroscopy and strength of biomembranes. Biophys J. 85(4):2342–2350. PubMed PMC

Fernandez  ML, Marshall  G, Sagués  F, Reigada  R. 2010. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J Phys Chem B. 114(20):6855–6865. PubMed

Kramar  P, Miklavčič  D. 2022. Effect of the cholesterol on electroporation of planar lipid bilayer. Bioelectrochemistry. 144:108004. PubMed

Lira  RB, Leomil  FS, Melo  RJ, Riske  KA, Dimova  R. 2021. To close or to collapse: the role of charges on membrane stability upon pore formation. Adv Sci. 8(11):2004068. PubMed PMC

Böckmann  RA, De Groot  BL, Kakorin  S, Neumann  E, Grubmüller  H. 2008. Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J. 95(4):1837–1850. PubMed PMC

Gurtovenko  AA, Vattulainen  I. 2005. Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J Am Chem Soc. 127(50):17570–17571. PubMed

Tarek  M. 2005. Membrane electroporation: a molecular dynamics simulation. Biophys J. 88(6):4045–4053. PubMed PMC

Tieleman  DP. 2004. The molecular basis of electroporation. BMC Biochem. 5(1):1–12. PubMed PMC

Ting  CL, Awasthi  N, Müller  M, Hub  JS. 2018. Metastable prepores in tension-free lipid bilayers. Biophys Rev Lett. 120(12):128103. PubMed

Ziegler  MJ, Vernier  PT. 2008. Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B. 112(43):13588–13596. PubMed

Piggot  TJ, Holdbrook  DA, Khalid  S. 2011. Electroporation of the E. coli and S. aureus membranes: molecular dynamics simulations of complex bacterial membranes. J Phys Chem B. 115(45):13381–13388. PubMed

Rems  L, et al.  2022. Identification of electroporation sites in the complex lipid organization of the plasma membrane. Elife. 11:e74773. PubMed PMC

Lorent  JH, et al.  2020. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol. 16(6):644–652. PubMed PMC

Pogozheva  ID, et al.  2022. Comparative molecular dynamics simulation studies of realistic eukaryotic, prokaryotic, and archaeal membranes. J Chem Inf Comput Sci. 62(4):1036–1051. PubMed

Reinhard  J, et al.  2024. Memprep, a new technology for isolating organellar membranes provides fingerprints of lipid bilayer stress. EMBO J. 43(8):1653–1685. PubMed PMC

Pluhackova  K, Horner  A. 2021. Native-like membrane models of E. coli polar lipid extract shed light on the importance of lipid composition complexity. BMC Biol. 19(1):1–22. PubMed PMC

Hub  JS. 2021. Joint reaction coordinate for computing the free-energy landscape of pore nucleation and pore expansion in lipid membranes. J Chem Theory Comput. 17(2):1229–1239. PubMed

Hub  JS, Awasthi  N. 2017. Probing a continuous polar defect: a reaction coordinate for pore formation in lipid membranes. J Chem Theory Comput. 13(5):2352–2366. PubMed

Hamm  M, Kozlov  M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur Phys J E. 3(4):323–335.

Helfrich  W. 1973. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C J Biosci. 28(11-12):693–703. PubMed

Doktorova  M, et al.  2023. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. bioRxiv pages 2023–07. 10.1101/2023.07.30.551157, preprint: not peer reviewed. DOI

Strahl  H, Errington  J. 2017. Bacterial membranes: structure, domains, and function. Annu Rev Microbiol. 71(1):519–538. PubMed

Beltrán-Heredia  E, et al.  2019. Membrane curvature induces cardiolipin sorting. Commun Biol. 2(1):225. PubMed PMC

Litster  J. 1975. Stability of lipid bilayers and red blood cell membranes. Phys Lett A. 53(3):193–194.

Taupin  C, Dvolaitzky  M, Sauterey  C. 1975. Osmotic pressure-induced pores in phospholipid vesicles. Biochemistry. 14(21):4771–4775. PubMed

Sun  J, Rutherford  ST, Silhavy  TJ, Huang  KC. 2022. Physical properties of the bacterial outer membrane. Nat Rev Microbiol. 20(4):236–248. PubMed PMC

Schaefer  SL, Hummer  G. 2022. Sublytic gasdermin-d pores captured in atomistic molecular simulations. Elife. 11:e81432. PubMed PMC

Awasthi  N, et al.  2019. Molecular mechanism of polycation-induced pore formation in biomembranes. ACS Biomater Sci Eng. 5(2):780–794. PubMed

Ulmschneider  JP, Ulmschneider  MB. 2018. Molecular dynamics simulations are redefining our view of peptides interacting with biological membranes. Acc Chem Res. 51(5):1106–1116. PubMed

Verbeek  SF, et al.  2021. How arginine derivatives alter the stability of lipid membranes: dissecting the roles of side chains, backbone and termini. Eur Biophys J. 50(2):127–142. PubMed PMC

Kasparyan  G, Poojari  C, Róg  T, Hub  JS. 2020. Cooperative effects of an antifungal moiety and DMSO on pore formation over lipid membranes revealed by free energy calculations. J Phys Chem B. 124(40):8811–8821. PubMed

Poojari  CS, Scherer  KC, Hub  JS. 2021. Free energies of membrane stalk formation from a lipidomics perspective. Nat Commun. 12(1):6594. PubMed PMC

Mehnert  T, Jacob  K, Bittman  R, Beyer  K. 2006. Structure and lipid interaction of N-palmitoylsphingomyelin in bilayer membranes as revealed by 2H-NMR spectroscopy. Biophys J. 90(3):939–946. PubMed PMC

Niemelä  P, Hyvönen  MT, Vattulainen  I. 2004. Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine. Biophys J. 87(5):2976–2989. PubMed PMC

Israelachvili  JN. Intermolecular and surface forces  Academic Press, 2011.

West  A, Ma  K, Chung  JL, Kindt  JT. 2013. Simulation studies of structure and edge tension of lipid bilayer edges: effects of tail structure and force-field. J Phys Chem A. 117(32):7114–7123. PubMed

Sáenz  JP, et al.  2015. Hopanoids as functional analogues of cholesterol in bacterial membranes. PNAS. 112(38):11971–11976. PubMed PMC

Rawicz  W, Olbrich  KC, McIntosh  T, Needham  D, Evans  E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J. 79(1):328–339. PubMed PMC

Szleifer  I, Kramer  D, Ben-Shaul  A, Gelbart  WM, Safran  SA. 1990. Molecular theory of curvature elasticity in surfactant films. J Chem Phys. 92(11):6800–6817.

Israelachvili  JN, Marčelja  S, Horn  RG. 1980. Physical principles of membrane organization. Q Rev Biophys. 13(2):121–200. PubMed

Fuller  N, Rand  R. 2001. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys J. 81(1):243–254. PubMed PMC

Hu  Q, et al.  2005. Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E. 71(3):031914. PubMed

Vernier  PT, et al.  2006. Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. J Am Chem Soc. 128(19):6288–6289. PubMed

Allolio  C, Harries  D. 2021. Calcium ions promote membrane fusion by forming negative-curvature inducing clusters on specific anionic lipids. ACS Nano. 15(8):12880–12887. PubMed

Konar  S, Arif  H, Allolio  C. 2023. Mitochondrial membrane model: lipids, elastic properties and the changing curvature of cardiolipin. Biophys J. 122(21):4274–4287. PubMed PMC

Venable  RM, Brown  FL, Pastor  RW. 2015. Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem Phys Lipids. 192:60–74. PubMed PMC

Rand  RP, Fuller  NL, Gruner  SM, Parsegian  VA. 1990. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry. 29(1):76–87. PubMed

Sodt  AJ, Venable  RM, Lyman  E, Pastor  RW. 2016. Nonadditive compositional curvature energetics of lipid bilayers. Phys Rev Lett. 117(13):138104. PubMed PMC

Chernomordik  L, et al.  1985. The shape of lipid molecules and monolayer membrane fusion. Biochim Biophys Acta Biomembr. 812(3):643–655.

Karatekin  E, et al.  2003. Cascades of transient pores in giant vesicles: line tension and transport. Biophys J. 84(3):1734–1749. PubMed PMC

Portet  T, Dimova  R. 2010. A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition. Biophys J. 99(10):3264–3273. PubMed PMC

Tazawa  K, Yamazaki  M. 2023. Effect of monolayer spontaneous curvature on constant tension-induced pore formation in lipid bilayers. J Chem Phys. 158(8):081101. PubMed

Zhelev  DV, Needham  D. 1993. Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. Biochim Biophys Acta Biomembr. 1147(1):89–104. PubMed

Kramar  P, Miklavcic  D, Lebar  AM. 2009. A system for the determination of planar lipid bilayer breakdown voltage and its applications. IIEEE Trans Nanobiosci. 8(2):132–138. PubMed

Levine  ZA, Vernier  PT. 2012. Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime. J Membr Biol. 245(10):599–610. PubMed

Griffiths  G, et al.  1989. The dynamic nature of the golgi complex. J Cell Biol. 108(2):277–297. PubMed PMC

Lessen  HJ, Sapp  KC, Beaven  AH, Ashkar  R, Sodt  AJ. 2022. Molecular mechanisms of spontaneous curvature and softening in complex lipid bilayer mixtures. Biophys J. 121(17):3188–3199. PubMed PMC

Pöhnl  M, Trollmann  MF, Böckmann  RA. 2023. Nonuniversal impact of cholesterol on membranes mobility, curvature sensing and elasticity. Nat Commun. 14(1):8038. PubMed PMC

Abraham  MJ, et al.  2015. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1-2:19–25.

Awasthi  N, Hub  JS. Free-energy calculations of pore formation in lipid membranes. In: Berkowitz ML, editor, Biomembrane simulations: computational studies of biological membranes CRC Press, 2019. p. 109–124.

Klauda  JB, Monje  V, Kim  T, Im  W. 2012. Improving the CHARMM force field for polyunsaturated fatty acid chains. J Phys Chem B. 116(31):9424–9431. PubMed

Klauda  JB, et al.  2010. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B. 114(23):7830–7843. PubMed PMC

Lim  JB, Rogaski  B, Klauda  JB. 2012. Update of the cholesterol force field parameters in CHARMM. J Phys Chem B. 116(1):203–210. PubMed

Venable  RM, et al.  2014. CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature. Biophys J. 107(1):134–145. PubMed PMC

West  A, et al.  2020. How do ethanolamine plasmalogens contribute to order and structure of neurological membranes?  J Phys Chem B. 124(5):828–839. PubMed PMC

Allolio  C, Haluts  A, Harries  D. 2018. A local instantaneous surface method for extracting membrane elastic moduli from simulation: comparison with other strategies. Chem Phys. 514:31–43.

Balusek  C, et al.  2019. Accelerating membrane simulations with hydrogen mass repartitioning. J Chem Theory Comput. 15(8):4673–4686. PubMed PMC

Bernetti  M, Bussi  G. 2020. Pressure control using stochastic cell rescaling. J Chem Phys. 153(11):114107. PubMed

Bjelkmar  P, Larsson  P, Cuendet  MA, Hess  B, Lindahl  E. 2010. Implementation of the CHARMM force field in gromacs: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput. 6(2):459–466. PubMed

Essmann  U, et al.  1995. A smooth particle mesh Ewald method. J Chem Phys. 103(19):8577–8593.

Goetz  R, Lipowsky  R. 1998. Computer simulations of bilayer membranes: self-assembly and interfacial tension. J Chem Phys. 108(17):7397–7409.

Hess  B. 2007. P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput. 4(1):116–122. PubMed

Hoover  WG. 1985. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 31(3):1695–1697. PubMed

Hub  JS, De Groot  BL, van der Spoel  D. 2010. g_wham - a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput. 6(12):3713–3720.

Jo  S, Kim  T, Iyer  VG, Im  W. 2008. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 29(11):1859–1865. PubMed

Jo  S, Lim  JB, Klauda  JB, Im  W. 2009. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J. 97(1):50–58. PubMed PMC

Jorgensen  WL, Chandrasekhar  J, Madura  JD, Impey  RW, Klein  ML. 1983. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 79(2):926–935.

Knight  CJ, Hub  JS. 2015. MemGen: a general web server for the setup of lipid membrane simulation systems. Bioinformatics. 31(17):2897–2899. PubMed

Kumar  S, Bouzida  D, Swendsen  R, Kollman  P, Rosenberg  J. 1992. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 13(8):1011–1021.

Miyamoto  S, Kollman  PA. 1992. Settle: an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem. 13(8):952–962.

Nosé  S. 1984. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 52(2):255–268.

Parrinello  M, Rahman  A. 1980. Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett. 45(14):1196–1199.

Schofield  P, Henderson  JR. 1982. Statistical mechanics of inhomogeneous fluids. Proc R Soc Lond A. 379(1776):231–246.

Sega  M, Fábián  B, Jedlovszky  P. 2016. Pressure profile calculation with mesh Ewald methods. J Chem Theory Comput. 12(9):4509–4515. PubMed

Torrie  GM, Valleau  JP. 1974. Monte Carlo free energy estimates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chem Phys Lett. 28(4):578–581.

Starke  L, Allolio  C, Hub  JS. 2024. Pore formation in complex biological membranes: torn between evolutionary needs. bioRxiv pages 2024–05. 10.1101/2024.05.06.592649, preprint: not peer reviewed. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...