How pore formation in complex biological membranes is governed by lipid composition, mechanics, and lateral sorting
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40046002
PubMed Central
PMC11879431
DOI
10.1093/pnasnexus/pgaf033
PII: pgaf033
Knihovny.cz E-zdroje
- Klíčová slova
- Helfrich theory, lipid membranes, molecular dynamics simulations, pore formation,
- Publikační typ
- časopisecké články MeSH
The primary function of biological membranes is to enable compartmentalization among cells and organelles. Loss of integrity by the formation of membrane pores would trigger uncontrolled depolarization or influx of toxic compounds, posing a fatal threat to living cells. How the lipid complexity of biological membranes enables mechanical stability against pore formation while, simultaneously, allowing for ongoing membrane remodeling is largely enigmatic. We performed molecular dynamics simulations of eight complex lipid membranes including the plasma membrane and membranes of the organelles endoplasmic reticulum, Golgi, lysosome, and mitochondrion. To quantify the mechanical stability of these membranes, we computed the free energy of transmembrane pore nucleation as well as the line tension of the rim of open pores. Our simulations reveal that complex biological membranes are remarkably stable, however, with the plasma membrane standing out as exceptionally stable, which aligns with its crucial role as a protective layer. We observe that sterol content is a key regulator for biomembrane stability, and that lateral sorting among lipid mixtures influences the energetics of membrane pores. A comparison of 25 model membranes with varying sterol content, tail length, tail saturation, and head group type shows that the pore nucleation free energy is mostly associated with the lipid tilt modulus, whereas the line tension along the pore rim is determined by the lipid intrinsic curvature. Together, our study provides an atomistic and energetic view on the role of lipid complexity in biomembrane stability.
Faculty of Mathematics and Physics Charles University 121 16 Prague Czech Republic
Theoretical Physics and Center for Biophysics Saarland University 66123 Saarbrücken Germany
Zobrazit více v PubMed
Shevchenko A, Simons K. 2010. Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol. 11(8):593–598. PubMed
Van Meer G, Voelker DR, Feigenson GW. 2008. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 9(2):112–124. PubMed PMC
Devaux PF. 1991. Static and dynamic lipid asymmetry in cell membranes. Biochemistry. 30(5):1163–1173. PubMed
Op Den Kap JAF. 1979. Lipid asymmetry in membranes. Ann Rev Biochem. 48(1):47–71. PubMed
Peraro MD, Van Der Goot FG. 2016. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol. 14(2):77–92. PubMed
Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 3(3):238–250. PubMed
Flores-Romero H, Ros U, Garcia-Saez AJ. 2020. Pore formation in regulated cell death. EMBO J. 39(23):e105753. PubMed PMC
Chabanon M, Ho JC, Liedberg B, Parikh AN, Rangamani P. 2017. Pulsatile lipid vesicles under osmotic stress. Biophys J. 112(8):1682–1691. PubMed PMC
Dias C, Nylandsted J. 2021. Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discov. 7(1):4. PubMed PMC
Abidor IG, et al. 1979. Electric breakdown of bilayer lipid membranes I. The main experimental facts and their qualitative discussion. Bioelectrochem Bioenerg. 6(1):37–52.
Kotnik T, et al. 2015. Electroporation-based applications in biotechnology. Trends Biotechnol. 33(8):480–488. PubMed
Eremchev M, et al. 2023. Passive transport of Ca2+ ions through lipid bilayers imaged by widefield second harmonic microscopy. Biophys J. 122(4):624–631. PubMed PMC
Roesel D, Eremchev M, Poojari CS, Hub JS, Roke S. 2022. Ion-induced transient potential fluctuations facilitate pore formation and cation transport through lipid membranes. J Am Chem Soc. 144(51):23352–23357. PubMed PMC
Sengel JT, Wallace MI. 2016. Imaging the dynamics of individual electropores. PNAS. 113(19):5281–5286. PubMed PMC
Kotnik T, Rems L, Tarek M, Miklavčič D. 2019. Membrane electroporation and electropermeabilization: mechanisms and models. Annu Rev Biophys. 48:63–91. PubMed
Bennett WD, Tieleman DP. 2014. The importance of membrane defects lessons from simulations. Acc Chem Res. 47(8):2244–2251. PubMed
Bubnis G, Grubmüller H. 2020. Sequential water and headgroup merger: membrane poration paths and energetics from md simulations. Biophys J. 119(12):2418–2430. PubMed PMC
Akimov SA, et al. 2017. Pore formation in lipid membrane II: energy landscape under external stress. Sci Rep. 7(1):12509. PubMed PMC
Awasthi N, Hub JS. 2016. Simulations of pore formation in lipid membranes: reaction coordinates, convergence, hysteresis, and finite-size effects. J Chem Theory Comput. 12(7):3261–3269. PubMed
Kasparyan G, Hub JS. 2024. Molecular simulations reveal the free energy landscape and transition state of membrane electroporation. Phys Rev Lett. 132(14):148401. PubMed
Wohlert J, Den Otter WK, Edholm O, Briels WJ. 2006. Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations. J Chem Phys. 124(15):154905. PubMed
Bennett WD, Sapay N, Tieleman DP. 2014. Atomistic simulations of pore formation and closure in lipid bilayers. Biophys J. 106(1):210–219. PubMed PMC
Evans E, Heinrich V, Ludwig F, Rawicz W. 2003. Dynamic tension spectroscopy and strength of biomembranes. Biophys J. 85(4):2342–2350. PubMed PMC
Fernandez ML, Marshall G, Sagués F, Reigada R. 2010. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. J Phys Chem B. 114(20):6855–6865. PubMed
Kramar P, Miklavčič D. 2022. Effect of the cholesterol on electroporation of planar lipid bilayer. Bioelectrochemistry. 144:108004. PubMed
Lira RB, Leomil FS, Melo RJ, Riske KA, Dimova R. 2021. To close or to collapse: the role of charges on membrane stability upon pore formation. Adv Sci. 8(11):2004068. PubMed PMC
Böckmann RA, De Groot BL, Kakorin S, Neumann E, Grubmüller H. 2008. Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. Biophys J. 95(4):1837–1850. PubMed PMC
Gurtovenko AA, Vattulainen I. 2005. Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. J Am Chem Soc. 127(50):17570–17571. PubMed
Tarek M. 2005. Membrane electroporation: a molecular dynamics simulation. Biophys J. 88(6):4045–4053. PubMed PMC
Tieleman DP. 2004. The molecular basis of electroporation. BMC Biochem. 5(1):1–12. PubMed PMC
Ting CL, Awasthi N, Müller M, Hub JS. 2018. Metastable prepores in tension-free lipid bilayers. Biophys Rev Lett. 120(12):128103. PubMed
Ziegler MJ, Vernier PT. 2008. Interface water dynamics and porating electric fields for phospholipid bilayers. J Phys Chem B. 112(43):13588–13596. PubMed
Piggot TJ, Holdbrook DA, Khalid S. 2011. Electroporation of the E. coli and S. aureus membranes: molecular dynamics simulations of complex bacterial membranes. J Phys Chem B. 115(45):13381–13388. PubMed
Rems L, et al. 2022. Identification of electroporation sites in the complex lipid organization of the plasma membrane. Elife. 11:e74773. PubMed PMC
Lorent JH, et al. 2020. Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape. Nat Chem Biol. 16(6):644–652. PubMed PMC
Pogozheva ID, et al. 2022. Comparative molecular dynamics simulation studies of realistic eukaryotic, prokaryotic, and archaeal membranes. J Chem Inf Comput Sci. 62(4):1036–1051. PubMed
Reinhard J, et al. 2024. Memprep, a new technology for isolating organellar membranes provides fingerprints of lipid bilayer stress. EMBO J. 43(8):1653–1685. PubMed PMC
Pluhackova K, Horner A. 2021. Native-like membrane models of E. coli polar lipid extract shed light on the importance of lipid composition complexity. BMC Biol. 19(1):1–22. PubMed PMC
Hub JS. 2021. Joint reaction coordinate for computing the free-energy landscape of pore nucleation and pore expansion in lipid membranes. J Chem Theory Comput. 17(2):1229–1239. PubMed
Hub JS, Awasthi N. 2017. Probing a continuous polar defect: a reaction coordinate for pore formation in lipid membranes. J Chem Theory Comput. 13(5):2352–2366. PubMed
Hamm M, Kozlov M. 2000. Elastic energy of tilt and bending of fluid membranes. Eur Phys J E. 3(4):323–335.
Helfrich W. 1973. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C J Biosci. 28(11-12):693–703. PubMed
Doktorova M, et al. 2023. Cell membranes sustain phospholipid imbalance via cholesterol asymmetry. bioRxiv pages 2023–07. 10.1101/2023.07.30.551157, preprint: not peer reviewed. DOI
Strahl H, Errington J. 2017. Bacterial membranes: structure, domains, and function. Annu Rev Microbiol. 71(1):519–538. PubMed
Beltrán-Heredia E, et al. 2019. Membrane curvature induces cardiolipin sorting. Commun Biol. 2(1):225. PubMed PMC
Litster J. 1975. Stability of lipid bilayers and red blood cell membranes. Phys Lett A. 53(3):193–194.
Taupin C, Dvolaitzky M, Sauterey C. 1975. Osmotic pressure-induced pores in phospholipid vesicles. Biochemistry. 14(21):4771–4775. PubMed
Sun J, Rutherford ST, Silhavy TJ, Huang KC. 2022. Physical properties of the bacterial outer membrane. Nat Rev Microbiol. 20(4):236–248. PubMed PMC
Schaefer SL, Hummer G. 2022. Sublytic gasdermin-d pores captured in atomistic molecular simulations. Elife. 11:e81432. PubMed PMC
Awasthi N, et al. 2019. Molecular mechanism of polycation-induced pore formation in biomembranes. ACS Biomater Sci Eng. 5(2):780–794. PubMed
Ulmschneider JP, Ulmschneider MB. 2018. Molecular dynamics simulations are redefining our view of peptides interacting with biological membranes. Acc Chem Res. 51(5):1106–1116. PubMed
Verbeek SF, et al. 2021. How arginine derivatives alter the stability of lipid membranes: dissecting the roles of side chains, backbone and termini. Eur Biophys J. 50(2):127–142. PubMed PMC
Kasparyan G, Poojari C, Róg T, Hub JS. 2020. Cooperative effects of an antifungal moiety and DMSO on pore formation over lipid membranes revealed by free energy calculations. J Phys Chem B. 124(40):8811–8821. PubMed
Poojari CS, Scherer KC, Hub JS. 2021. Free energies of membrane stalk formation from a lipidomics perspective. Nat Commun. 12(1):6594. PubMed PMC
Mehnert T, Jacob K, Bittman R, Beyer K. 2006. Structure and lipid interaction of N-palmitoylsphingomyelin in bilayer membranes as revealed by 2H-NMR spectroscopy. Biophys J. 90(3):939–946. PubMed PMC
Niemelä P, Hyvönen MT, Vattulainen I. 2004. Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine. Biophys J. 87(5):2976–2989. PubMed PMC
Israelachvili JN. Intermolecular and surface forces Academic Press, 2011.
West A, Ma K, Chung JL, Kindt JT. 2013. Simulation studies of structure and edge tension of lipid bilayer edges: effects of tail structure and force-field. J Phys Chem A. 117(32):7114–7123. PubMed
Sáenz JP, et al. 2015. Hopanoids as functional analogues of cholesterol in bacterial membranes. PNAS. 112(38):11971–11976. PubMed PMC
Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J. 79(1):328–339. PubMed PMC
Szleifer I, Kramer D, Ben-Shaul A, Gelbart WM, Safran SA. 1990. Molecular theory of curvature elasticity in surfactant films. J Chem Phys. 92(11):6800–6817.
Israelachvili JN, Marčelja S, Horn RG. 1980. Physical principles of membrane organization. Q Rev Biophys. 13(2):121–200. PubMed
Fuller N, Rand R. 2001. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys J. 81(1):243–254. PubMed PMC
Hu Q, et al. 2005. Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E. 71(3):031914. PubMed
Vernier PT, et al. 2006. Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. J Am Chem Soc. 128(19):6288–6289. PubMed
Allolio C, Harries D. 2021. Calcium ions promote membrane fusion by forming negative-curvature inducing clusters on specific anionic lipids. ACS Nano. 15(8):12880–12887. PubMed
Konar S, Arif H, Allolio C. 2023. Mitochondrial membrane model: lipids, elastic properties and the changing curvature of cardiolipin. Biophys J. 122(21):4274–4287. PubMed PMC
Venable RM, Brown FL, Pastor RW. 2015. Mechanical properties of lipid bilayers from molecular dynamics simulation. Chem Phys Lipids. 192:60–74. PubMed PMC
Rand RP, Fuller NL, Gruner SM, Parsegian VA. 1990. Membrane curvature, lipid segregation, and structural transitions for phospholipids under dual-solvent stress. Biochemistry. 29(1):76–87. PubMed
Sodt AJ, Venable RM, Lyman E, Pastor RW. 2016. Nonadditive compositional curvature energetics of lipid bilayers. Phys Rev Lett. 117(13):138104. PubMed PMC
Chernomordik L, et al. 1985. The shape of lipid molecules and monolayer membrane fusion. Biochim Biophys Acta Biomembr. 812(3):643–655.
Karatekin E, et al. 2003. Cascades of transient pores in giant vesicles: line tension and transport. Biophys J. 84(3):1734–1749. PubMed PMC
Portet T, Dimova R. 2010. A new method for measuring edge tensions and stability of lipid bilayers: effect of membrane composition. Biophys J. 99(10):3264–3273. PubMed PMC
Tazawa K, Yamazaki M. 2023. Effect of monolayer spontaneous curvature on constant tension-induced pore formation in lipid bilayers. J Chem Phys. 158(8):081101. PubMed
Zhelev DV, Needham D. 1993. Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. Biochim Biophys Acta Biomembr. 1147(1):89–104. PubMed
Kramar P, Miklavcic D, Lebar AM. 2009. A system for the determination of planar lipid bilayer breakdown voltage and its applications. IIEEE Trans Nanobiosci. 8(2):132–138. PubMed
Levine ZA, Vernier PT. 2012. Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime. J Membr Biol. 245(10):599–610. PubMed
Griffiths G, et al. 1989. The dynamic nature of the golgi complex. J Cell Biol. 108(2):277–297. PubMed PMC
Lessen HJ, Sapp KC, Beaven AH, Ashkar R, Sodt AJ. 2022. Molecular mechanisms of spontaneous curvature and softening in complex lipid bilayer mixtures. Biophys J. 121(17):3188–3199. PubMed PMC
Pöhnl M, Trollmann MF, Böckmann RA. 2023. Nonuniversal impact of cholesterol on membranes mobility, curvature sensing and elasticity. Nat Commun. 14(1):8038. PubMed PMC
Abraham MJ, et al. 2015. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1-2:19–25.
Awasthi N, Hub JS. Free-energy calculations of pore formation in lipid membranes. In: Berkowitz ML, editor, Biomembrane simulations: computational studies of biological membranes CRC Press, 2019. p. 109–124.
Klauda JB, Monje V, Kim T, Im W. 2012. Improving the CHARMM force field for polyunsaturated fatty acid chains. J Phys Chem B. 116(31):9424–9431. PubMed
Klauda JB, et al. 2010. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B. 114(23):7830–7843. PubMed PMC
Lim JB, Rogaski B, Klauda JB. 2012. Update of the cholesterol force field parameters in CHARMM. J Phys Chem B. 116(1):203–210. PubMed
Venable RM, et al. 2014. CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature. Biophys J. 107(1):134–145. PubMed PMC
West A, et al. 2020. How do ethanolamine plasmalogens contribute to order and structure of neurological membranes? J Phys Chem B. 124(5):828–839. PubMed PMC
Allolio C, Haluts A, Harries D. 2018. A local instantaneous surface method for extracting membrane elastic moduli from simulation: comparison with other strategies. Chem Phys. 514:31–43.
Balusek C, et al. 2019. Accelerating membrane simulations with hydrogen mass repartitioning. J Chem Theory Comput. 15(8):4673–4686. PubMed PMC
Bernetti M, Bussi G. 2020. Pressure control using stochastic cell rescaling. J Chem Phys. 153(11):114107. PubMed
Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E. 2010. Implementation of the CHARMM force field in gromacs: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput. 6(2):459–466. PubMed
Essmann U, et al. 1995. A smooth particle mesh Ewald method. J Chem Phys. 103(19):8577–8593.
Goetz R, Lipowsky R. 1998. Computer simulations of bilayer membranes: self-assembly and interfacial tension. J Chem Phys. 108(17):7397–7409.
Hess B. 2007. P-LINCS: a parallel linear constraint solver for molecular simulation. J Chem Theory Comput. 4(1):116–122. PubMed
Hoover WG. 1985. Canonical dynamics: equilibrium phase-space distributions. Phys Rev A. 31(3):1695–1697. PubMed
Hub JS, De Groot BL, van der Spoel D. 2010. g_wham - a free weighted histogram analysis implementation including robust error and autocorrelation estimates. J Chem Theory Comput. 6(12):3713–3720.
Jo S, Kim T, Iyer VG, Im W. 2008. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 29(11):1859–1865. PubMed
Jo S, Lim JB, Klauda JB, Im W. 2009. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J. 97(1):50–58. PubMed PMC
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. 1983. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 79(2):926–935.
Knight CJ, Hub JS. 2015. MemGen: a general web server for the setup of lipid membrane simulation systems. Bioinformatics. 31(17):2897–2899. PubMed
Kumar S, Bouzida D, Swendsen R, Kollman P, Rosenberg J. 1992. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 13(8):1011–1021.
Miyamoto S, Kollman PA. 1992. Settle: an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem. 13(8):952–962.
Nosé S. 1984. A molecular dynamics method for simulations in the canonical ensemble. Mol Phys. 52(2):255–268.
Parrinello M, Rahman A. 1980. Crystal structure and pair potentials: a molecular-dynamics study. Phys Rev Lett. 45(14):1196–1199.
Schofield P, Henderson JR. 1982. Statistical mechanics of inhomogeneous fluids. Proc R Soc Lond A. 379(1776):231–246.
Sega M, Fábián B, Jedlovszky P. 2016. Pressure profile calculation with mesh Ewald methods. J Chem Theory Comput. 12(9):4509–4515. PubMed
Torrie GM, Valleau JP. 1974. Monte Carlo free energy estimates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chem Phys Lett. 28(4):578–581.
Starke L, Allolio C, Hub JS. 2024. Pore formation in complex biological membranes: torn between evolutionary needs. bioRxiv pages 2024–05. 10.1101/2024.05.06.592649, preprint: not peer reviewed. DOI