• This record comes from PubMed

Carrier Multiplication and Photoexcited Many-Body States in Solution-Processed 2H-MoSe2

. 2025 Mar 18 ; 19 (10) : 10347-10358. [epub] 20250306

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Carrier multiplication (CM), where a single high-energy photon generates multiple electron-hole pairs, offers a promising route to enhance the efficiency of solar cells and photodetectors.Transition metal dichalcogenides, such as 2H-MoTe2 and 2H-WSe2, exhibit efficient CM. Given the similar electronic band structure of 2H-MoSe2, it is expected to show comparable CM efficiency. In this study, we establish the occurrence and efficiency of CM in a solution-processed thin film of bulk-like 2H-MoSe2. We characterize the dynamics of excitons and free charge carriers by using ultrafast transient optical absorption and terahertz spectroscopy. At higher photon energy the efficiency is comparable to literature results for 2H-MoTe2 grown by chemical vapor deposition (CVD) or in bulk crystalline form. At higher photon energies the experimental CM efficiency is reproduced by theoretical modeling. We also observe CM for photon energies below the energetic threshold of twice the band gap, which is most probably due to subgap defect states. Transient optical absorption spectra of 2H-MoSe2 exhibit features of trions from which we infer that photoexcitation leads to free charge carriers. We find no signatures of excitons at the indirect band gap. From analysis of the frequency dependence of the terahertz conductivity we infer that scattering of charge carriers in our sample is less than for CVD grown or bulk crystalline 2H-MoTe2. Our findings make solution-processed 2H-MoSe2 an interesting material for exploitation of CM in photovoltaic devices.

See more in PubMed

Shockley W.; Queisser H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32 (3), 510–519. 10.1063/1.1736034. DOI

Hanna M. C.; Nozik A. J. Solar Conversion Efficiency of Photovoltaic and Photoelectrolysis Cells with Carrier Multiplication Absorbers. J. Appl. Phys. 2006, 100 (7), 074510.10.1063/1.2356795. DOI

Maiti S.; van der Laan M.; Poonia D.; Schall P.; Kinge S.; Siebbeles L. D. A. Emergence of New Materials for Exploiting Highly Efficient Carrier Multiplication in Photovoltaics. Chem. Phys. Rev. 2020, 1 (1), 011302.10.1063/5.0025748. DOI

Maiti S.; Ferro S.; Poonia D.; Ehrler B.; Kinge S.; Siebbeles L. D. A. Efficient Carrier Multiplication in Low Band Gap Mixed Sn/Pb Halide Perovskites. J. Phys. Chem. Lett. 2020, 11 (15), 6146–6149. 10.1021/acs.jpclett.0c01788. PubMed DOI PMC

Wang Y.; Ye S.; Lim J. W. M.; Giovanni D.; Feng M.; Fu J.; Krishnamoorthy H. N. S.; Zhang Q.; Xu Q.; Cai R.; et al. Carrier Multiplication in Perovskite Solar Cells with Internal Quantum Efficiency Exceeding 100%. Nat. Commun. 2023, 14 (1), 6293.10.1038/s41467-023-41758-w. PubMed DOI PMC

Kim J.-H.; Bergren M. R.; Park J. C.; Adhikari S.; Lorke M.; Frauenheim T.; Choe D.-H.; Kim B.; Choi H.; Gregorkiewicz T.; et al. Carrier Multiplication in Van Der Waals Layered Transition Metal Dichalcogenides. Nat. Commun. 2019, 10 (1), 5488.10.1038/s41467-019-13325-9. PubMed DOI PMC

Zheng W.; Bonn M.; Wang H. I. Photoconductivity Multiplication in Semiconducting Few-Layer MoTe2. Nano Lett. 2020, 20 (8), 5807–5813. 10.1021/acs.nanolett.0c01693. PubMed DOI PMC

Kim J. S.; Tran M. D.; Kim S. T.; Yoo D.; Oh S.-H.; Kim J.-H.; Lee Y. H. Escalated Photocurrent with Excitation Energy in Dual-Gated MoTe2. Nano Lett. 2021, 21 (5), 1976–1981. 10.1021/acs.nanolett.0c04410. PubMed DOI

Robey S. W.; Krylyuk S.; Davydov A. V.; Heilweil E. J. Optical Pump–Terahertz Probe Measurements of Photocarrier Multiplication in 2D Bulk Single-Crystal 2H-MoTe2. J. Phys. Chem. C 2024, 128 (21), 8672–8680. 10.1021/acs.jpcc.4c00893. DOI

Karmakar R.; Taank P.; Ghoshal D.; Yadav P.; Mandal D.; Shrivastava M.; Agarwal A.; Beard M. C.; Miller E. M.; Adarsh K. V. Multiple Carrier Generation at an Exceptionally Low Energy Threshold. Phys. Rev. Lett. 2025, 134 (2), 026903.10.1103/PhysRevLett.134.026903. PubMed DOI

Weerdenburg S.; Singh N.; van der Laan M.; Kinge S.; Schall P.; Siebbeles L. D. A. New Theoretical Model to Describe Carrier Multiplication in Semiconductors: Explanation of Disparate Efficiency in MoTe2 versus PbS and PbSe. J. Phys. Chem. C 2024, 128 (9), 3693–3702. 10.1021/acs.jpcc.4c00383. PubMed DOI PMC

Liu Y.; Frauenheim T.; Yam C. Carrier Multiplication in Transition Metal Dichalcogenides Beyond Threshold Limit. Adv. Sci. 2022, 9 (31), 2203400.10.1002/advs.202203400. PubMed DOI PMC

Carey T.; Cassidy O.; Synnatschke K.; Caffrey E.; Garcia J.; Liu S.; Kaur H.; Kelly A. G.; Munuera J.; Gabbett C.; et al. High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides. ACS Nano 2023, 17 (3), 2912–2922. 10.1021/acsnano.2c11319. PubMed DOI PMC

Agarwal M. K.; Wani P. A. Growth Conditions and Crystal Structure Parameters of Layer Compounds in the Series Mo1–xWxSe2. Mater. Res. Bull. 1979, 14 (6), 825–830. 10.1016/0025-5408(79)90144-2. DOI

Nam D.; Lee J.-U.; Cheong H. Excitation Energy Dependent Raman Spectrum of MoSe2. Sci. Rep. 2015, 5 (1), 17113.10.1038/srep17113. PubMed DOI PMC

Gupta U.; Naidu B. S.; Maitra U.; Singh A.; Shirodkar S. N.; Waghmare U. V.; Rao C. N. R. Characterization of Few-Layer 1T-MoSe2 and its Superior Performance in The Visible-Light Induced Hydrogen Evolution Reaction. APL Mater. 2014, 2 (9), 092802.10.1063/1.4892976. DOI

Chen K.; Ghosh R.; Meng X.; Roy A.; Kim J.-S.; He F.; Mason S. C.; Xu X.; Lin J.-F.; Akinwande D.; et al. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD Grown Monolayer MoSe2. npj 2D Mater. Appl. 2017, 1 (1), 15.10.1038/s41699-017-0019-1. DOI

Zhang Y.; Chang T.-R.; Zhou B.; Cui Y.-T.; Yan H.; Liu Z.; Schmitt F.; Lee J.; Moore R.; Chen Y.; et al. Direct Observation of the Transition From Indirect to Direct Bandgap in Atomically Thin Epitaxial MoSe2. Nat. Nanotechnol. 2014, 9 (2), 111–115. 10.1038/nnano.2013.277. PubMed DOI

Arora A.; Nogajewski K.; Molas M.; Koperski M.; Potemski M. Exciton Band Structure in Layered MoSe2: from a Monolayer to the Bulk Limit. Nanoscale 2015, 7 (48), 20769–20775. 10.1039/C5NR06782K. PubMed DOI

Niu Y.; Gonzalez-Abad S.; Frisenda R.; Marauhn P.; Drüppel M.; Gant P.; Schmidt R.; Taghavi N. S.; Barcons D.; Molina-Mendoza A. J.; et al. Thickness-Dependent Differential Reflectance Spectra of Monolayer and Few-Layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials 2018, 8 (9), 725.10.3390/nano8090725. PubMed DOI PMC

Gillespie S. C.; van der Laan M.; Poonia D.; Maiti S.; Kinge S.; Siebbeles L. D. A.; Schall P. Optical Signatures of Charge- and Energy Transfer in TMDC/TMDC and TMDC/Perovskite Heterostructures. 2D Mater. 2024, 11 (2), 022005.10.1088/2053-1583/ad341c. DOI

Kam K. K.; Parkinson B. A. Detailed Photocurrent Spectroscopy of the Semiconducting Group VIB Transition Metal Dichalcogenides. J. Phys. Chem. 1982, 86 (4), 463–467. 10.1021/j100393a010. DOI

Beal A. R.; Hughes H. P. Kramers-Kronig Analysis of the Reflectivity Spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2. J. Phys. C: Solid State Phys. 1979, 12 (5), 881.10.1088/0022-3719/12/5/017. DOI

Qiu D. Y.; da Jornada F. H.; Louie S. G. Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States. Phys. Rev. Lett. 2013, 111 (21), 216805.10.1103/PhysRevLett.111.216805. PubMed DOI

Zhou W.; Zou X.; Najmaei S.; Liu Z.; Shi Y.; Kong J.; Lou J.; Ajayan P. M.; Yakobson B. I.; Idrobo J.-C. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Lett. 2013, 13 (6), 2615–2622. 10.1021/nl4007479. PubMed DOI

Li L.; Carter E. A. Defect-Mediated Charge-Carrier Trapping and Nonradiative Recombination in WSe2 Monolayers. J. Am. Chem. Soc. 2019, 141 (26), 10451–10461. 10.1021/jacs.9b04663. PubMed DOI

Ruppert C.; Chernikov A.; Hill H. M.; Rigosi A. F.; Heinz T. F. The Role of Electronic and Phononic Excitation in the Optical Response of Monolayer WS2 after Ultrafast Excitation. Nano Lett. 2017, 17 (2), 644–651. 10.1021/acs.nanolett.6b03513. PubMed DOI

Wang T.; Hopper T. R.; Mondal N.; Liu S.; Yao C.; Zheng X.; Torrisi F.; Bakulin A. A. Hot Carrier Cooling and Trapping in Atomically Thin WS2 Probed by Three-Pulse Femtosecond Spectroscopy. ACS Nano 2023, 17 (7), 6330–6340. 10.1021/acsnano.2c10479. PubMed DOI PMC

Poonia D.; Singh N.; Schulpen J. J. P. M.; van der Laan M.; Maiti S.; Failla M.; Kinge S.; Bol A. A.; Schall P.; Siebbeles L. D. A. Effects of the Structure and Temperature on the Nature of Excitons in the Mo0.6W0.4S2 Alloy. J. Phys. Chem. C 2022, 126 (4), 1931–1938. 10.1021/acs.jpcc.1c09806. PubMed DOI PMC

Pasanen H. P.; Khan R.; Odutola J. A.; Tkachenko N. V. Transient Absorption Spectroscopy of Films: Impact of Refractive Index. J. Phys. Chem. C 2024, 128 (15), 6167–6179. 10.1021/acs.jpcc.4c00981. PubMed DOI PMC

Walsh C. P.; Malizia J. P.; Sutton S. C.; Papanikolas J. M.; Cahoon J. F. Monolayer-like Exciton Recombination Dynamics of Multilayer MoSe2 Observed by Pump–Probe Microscopy. Nano Lett. 2024, 24 (4), 1431–1438. 10.1021/acs.nanolett.3c04754. PubMed DOI

Kumar N.; He J.; He D.; Wang Y.; Zhao H. Charge Carrier Dynamics in Bulk MoS2 Crystal Studied by Transient Absorption Microscopy. J. Appl. Phys. 2013, 113 (13), 133702.10.1063/1.4799110. DOI

Tsokkou D.; Yu X.; Sivula K.; Banerji N. The Role of Excitons and Free Charges in the Excited-State Dynamics of Solution-Processed Few-Layer MoS2 Nanoflakes. J. Phys. Chem. C 2016, 120 (40), 23286–23292. 10.1021/acs.jpcc.6b09267. DOI

Ataei S. S.; Varsano D.; Molinari E.; Rontani M. Evidence of Ideal Excitonic Insulator in Bulk MoS2 Under Pressure. Proc. Natl. Acad. Sci. U.S.A. 2021, 118 (13), e201011011810.1073/pnas.2010110118. PubMed DOI PMC

Schiettecatte P.; Hens Z.; Geiregat P. A Roadmap to Decipher Ultrafast Photophysics in Two-Dimensional Nanomaterials. J. Chem. Phys. 2023, 158 (1), 014202.10.1063/5.0134962. PubMed DOI

Combescot M., Shiau S.-Y.. Excitons and Cooper Pairs; Oxford University Press, 2016.

Combescot M.; Betbeder-Matibet O.; Dubin F. The Many-Body Physics of Composite Bosons. Phys. Rep. 2008, 463 (5), 215–320. 10.1016/j.physrep.2007.11.003. DOI

Schmitt-Rink S.; Chemla D. S.; Miller D. A. B. Theory of Transient Excitonic Optical Nonlinearities in Semiconductor Quantum-Well Structures. Phys. Rev. B:Condens. Matter Mater. Phys. 1985, 32 (10), 6601–6609. 10.1103/PhysRevB.32.6601. PubMed DOI

Wang G.; Gerber I. C.; Bouet L.; Lagarde D.; Balocchi A.; Vidal M.; Amand T.; Marie X.; Urbaszek B. Exciton States in Monolayer MoSe2: Impact on Interband Transitions. 2D Mater. 2015, 2 (4), 045005.10.1088/2053-1583/2/4/045005. DOI

Hao K.; Specht J. F.; Nagler P.; Xu L.; Tran K.; Singh A.; Dass C. K.; Schüller C.; Korn T.; Richter M.; et al. Neutral and Charged Inter-Valley Biexcitons in Monolayer MoSe2. Nat. Commun. 2017, 8 (1), 15552.10.1038/ncomms15552. PubMed DOI PMC

Pei J.; Yang J.; Wang X.; Wang F.; Mokkapati S.; Lü T.; Zheng J.-C.; Qin Q.; Neshev D.; Tan H. H.; et al. Excited State Biexcitons in Atomically Thin MoSe2. ACS Nano 2017, 11 (7), 7468–7475. 10.1021/acsnano.7b03909. PubMed DOI

Steinleitner P.; Merkl P.; Nagler P.; Mornhinweg J.; Schüller C.; Korn T.; Chernikov A.; Huber R. Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2. Nano Lett. 2017, 17 (3), 1455–1460. 10.1021/acs.nanolett.6b04422. PubMed DOI

Ceballos F.; Cui Q.; Bellus M. Z.; Zhao H. Exciton Formation in Monolayer Transition Metal Dichalcogenides. Nanoscale 2016, 8 (22), 11681–11688. 10.1039/C6NR02516A. PubMed DOI

Spies J. A.; Neu J.; Tayvah U. T.; Capobianco M. D.; Pattengale B.; Ostresh S.; Schmuttenmaer C. A. Terahertz Spectroscopy of Emerging Materials. J. Phys. Chem. C 2020, 124 (41), 22335–22346. 10.1021/acs.jpcc.0c06344. DOI

Hempel H.; Savenjie T. J.; Stolterfoht M.; Neu J.; Failla M.; Paingad V. C.; Kužel P.; Heilweil E. J.; Spies J. A.; Schleuning M.; et al. Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy. Adv. Energy Mater. 2022, 12 (13), 2102776.10.1002/aenm.202102776. DOI

Gabbett C.; Kelly A. G.; Coleman E.; Doolan L.; Carey T.; Synnatschke K.; Liu S.; Dawson A.; O’Suilleabhain D.; Munuera J.; et al. Understanding How Junction Resistances Impact the Conduction Mechanism in Nano-Networks. Nat. Commun. 2024, 15 (1), 4517.10.1038/s41467-024-48614-5. PubMed DOI PMC

He C.; Zhu L.; Zhao Q.; Huang Y.; Yao Z.; Du W.; He Y.; Zhang S.; Xu X. Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time-Resolved Terahertz Spectroscopy. Adv. Opt. Mater. 2018, 6 (19), 1800290.10.1002/adom.201800290. DOI

Smith N. V. Classical Generalization of the Drude Formula for the Optical Conductivity. Phys. Rev. B 2001, 64 (15), 155106.10.1103/PhysRevB.64.155106. DOI

Ulbricht R.; Hendry E.; Shan J.; Heinz T. F.; Bonn M. Carrier Dynamics in Semiconductors Studied with Time-Resolved Terahertz Spectroscopy. Rev. Mod. Phys. 2011, 83 (2), 543–586. 10.1103/RevModPhys.83.543. DOI

Grozema F. C.; Siebbeles L. D. A. Mechanism of Charge Transport in Self-Organizing Organic Materials. Int. Rev. Phys. Chem. 2008, 27 (1), 87–138. 10.1080/01442350701782776. DOI

Lauth J.; Failla M.; Klein E.; Klinke C.; Kinge S.; Siebbeles L. D. A. Photoexcitation of PbS Nanosheets Leads to Highly Mobile Charge Carriers and Stable Excitons. Nanoscale 2019, 11 (44), 21569–21576. 10.1039/C9NR07927K. PubMed DOI

Failla M.; Flórez F. G.; Salzmann B. B. V.; Vanmaekelbergh D.; Stoof H. T. C.; Siebbeles L. D. A. Effects of Pump Photon Energy on Generation and Ultrafast Relaxation of Excitons and Charge Carriers in CdSe Nanoplatelets. J. Phys. Chem. C 2023, 127 (4), 1899–1907. 10.1021/acs.jpcc.2c07292. PubMed DOI PMC

Lloyd-Hughes J.; Jeon T.-I. A Review of the Terahertz Conductivity of Bulk and Nano-Materials. J. Infrared Millim. Terahertz Waves 2012, 33 (9), 871–925. 10.1007/s10762-012-9905-y. DOI

Lauth J.; Kulkarni A.; Spoor F. C. M.; Renaud N.; Grozema F. C.; Houtepen A. J.; Schins J. M.; Kinge S.; Siebbeles L. D. A. Photogeneration and Mobility of Charge Carriers in Atomically Thin Colloidal InSe Nanosheets Probed by Ultrafast Terahertz Spectroscopy. J. Phys. Chem. Lett. 2016, 7 (20), 4191–4196. 10.1021/acs.jpclett.6b01835. PubMed DOI

Naftaly M.; Gregory A. Terahertz and Microwave Optical Properties of Single-Crystal Quartz and Vitreous Silica and the Behavior of the Boson Peak. Appl. Sci. 2021, 11 (15), 6733.10.3390/app11156733. DOI

Gonze X.; Amadon B.; Antonius G.; Arnardi F.; Baguet L.; Beuken J.-M.; Bieder J.; Bottin F.; Bouchet J.; Bousquet E.; et al. The ABINIT Project: Impact, Environment and Recent Developments. Comput. Phys. Commun. 2020, 248, 107042.10.1016/j.cpc.2019.107042. DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...