Carrier Multiplication and Photoexcited Many-Body States in Solution-Processed 2H-MoSe2
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40047396
PubMed Central
PMC11924332
DOI
10.1021/acsnano.4c18254
Knihovny.cz E-resources
- Keywords
- carrier multiplication, excitons, solution-processed transition metal dichalcogenide, terahertz spectroscopy, transient absorption spectroscopy, trions,
- Publication type
- Journal Article MeSH
Carrier multiplication (CM), where a single high-energy photon generates multiple electron-hole pairs, offers a promising route to enhance the efficiency of solar cells and photodetectors.Transition metal dichalcogenides, such as 2H-MoTe2 and 2H-WSe2, exhibit efficient CM. Given the similar electronic band structure of 2H-MoSe2, it is expected to show comparable CM efficiency. In this study, we establish the occurrence and efficiency of CM in a solution-processed thin film of bulk-like 2H-MoSe2. We characterize the dynamics of excitons and free charge carriers by using ultrafast transient optical absorption and terahertz spectroscopy. At higher photon energy the efficiency is comparable to literature results for 2H-MoTe2 grown by chemical vapor deposition (CVD) or in bulk crystalline form. At higher photon energies the experimental CM efficiency is reproduced by theoretical modeling. We also observe CM for photon energies below the energetic threshold of twice the band gap, which is most probably due to subgap defect states. Transient optical absorption spectra of 2H-MoSe2 exhibit features of trions from which we infer that photoexcitation leads to free charge carriers. We find no signatures of excitons at the indirect band gap. From analysis of the frequency dependence of the terahertz conductivity we infer that scattering of charge carriers in our sample is less than for CVD grown or bulk crystalline 2H-MoTe2. Our findings make solution-processed 2H-MoSe2 an interesting material for exploitation of CM in photovoltaic devices.
ICT Innovation Delft University of Technology Landbergstraat 15 Delft 2628 CE The Netherlands
Institute of Physics University of Amsterdam Science Park 904 Amsterdam 1098 XH The Netherlands
School of Physics CRANN and AMBER Research Centres Trinity College Dublin Dublin D02 E8C0 Ireland
See more in PubMed
Shockley W.; Queisser H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32 (3), 510–519. 10.1063/1.1736034. DOI
Hanna M. C.; Nozik A. J. Solar Conversion Efficiency of Photovoltaic and Photoelectrolysis Cells with Carrier Multiplication Absorbers. J. Appl. Phys. 2006, 100 (7), 074510.10.1063/1.2356795. DOI
Maiti S.; van der Laan M.; Poonia D.; Schall P.; Kinge S.; Siebbeles L. D. A. Emergence of New Materials for Exploiting Highly Efficient Carrier Multiplication in Photovoltaics. Chem. Phys. Rev. 2020, 1 (1), 011302.10.1063/5.0025748. DOI
Maiti S.; Ferro S.; Poonia D.; Ehrler B.; Kinge S.; Siebbeles L. D. A. Efficient Carrier Multiplication in Low Band Gap Mixed Sn/Pb Halide Perovskites. J. Phys. Chem. Lett. 2020, 11 (15), 6146–6149. 10.1021/acs.jpclett.0c01788. PubMed DOI PMC
Wang Y.; Ye S.; Lim J. W. M.; Giovanni D.; Feng M.; Fu J.; Krishnamoorthy H. N. S.; Zhang Q.; Xu Q.; Cai R.; et al. Carrier Multiplication in Perovskite Solar Cells with Internal Quantum Efficiency Exceeding 100%. Nat. Commun. 2023, 14 (1), 6293.10.1038/s41467-023-41758-w. PubMed DOI PMC
Kim J.-H.; Bergren M. R.; Park J. C.; Adhikari S.; Lorke M.; Frauenheim T.; Choe D.-H.; Kim B.; Choi H.; Gregorkiewicz T.; et al. Carrier Multiplication in Van Der Waals Layered Transition Metal Dichalcogenides. Nat. Commun. 2019, 10 (1), 5488.10.1038/s41467-019-13325-9. PubMed DOI PMC
Zheng W.; Bonn M.; Wang H. I. Photoconductivity Multiplication in Semiconducting Few-Layer MoTe2. Nano Lett. 2020, 20 (8), 5807–5813. 10.1021/acs.nanolett.0c01693. PubMed DOI PMC
Kim J. S.; Tran M. D.; Kim S. T.; Yoo D.; Oh S.-H.; Kim J.-H.; Lee Y. H. Escalated Photocurrent with Excitation Energy in Dual-Gated MoTe2. Nano Lett. 2021, 21 (5), 1976–1981. 10.1021/acs.nanolett.0c04410. PubMed DOI
Robey S. W.; Krylyuk S.; Davydov A. V.; Heilweil E. J. Optical Pump–Terahertz Probe Measurements of Photocarrier Multiplication in 2D Bulk Single-Crystal 2H-MoTe2. J. Phys. Chem. C 2024, 128 (21), 8672–8680. 10.1021/acs.jpcc.4c00893. DOI
Karmakar R.; Taank P.; Ghoshal D.; Yadav P.; Mandal D.; Shrivastava M.; Agarwal A.; Beard M. C.; Miller E. M.; Adarsh K. V. Multiple Carrier Generation at an Exceptionally Low Energy Threshold. Phys. Rev. Lett. 2025, 134 (2), 026903.10.1103/PhysRevLett.134.026903. PubMed DOI
Weerdenburg S.; Singh N.; van der Laan M.; Kinge S.; Schall P.; Siebbeles L. D. A. New Theoretical Model to Describe Carrier Multiplication in Semiconductors: Explanation of Disparate Efficiency in MoTe2 versus PbS and PbSe. J. Phys. Chem. C 2024, 128 (9), 3693–3702. 10.1021/acs.jpcc.4c00383. PubMed DOI PMC
Liu Y.; Frauenheim T.; Yam C. Carrier Multiplication in Transition Metal Dichalcogenides Beyond Threshold Limit. Adv. Sci. 2022, 9 (31), 2203400.10.1002/advs.202203400. PubMed DOI PMC
Carey T.; Cassidy O.; Synnatschke K.; Caffrey E.; Garcia J.; Liu S.; Kaur H.; Kelly A. G.; Munuera J.; Gabbett C.; et al. High-Mobility Flexible Transistors with Low-Temperature Solution-Processed Tungsten Dichalcogenides. ACS Nano 2023, 17 (3), 2912–2922. 10.1021/acsnano.2c11319. PubMed DOI PMC
Agarwal M. K.; Wani P. A. Growth Conditions and Crystal Structure Parameters of Layer Compounds in the Series Mo1–xWxSe2. Mater. Res. Bull. 1979, 14 (6), 825–830. 10.1016/0025-5408(79)90144-2. DOI
Nam D.; Lee J.-U.; Cheong H. Excitation Energy Dependent Raman Spectrum of MoSe2. Sci. Rep. 2015, 5 (1), 17113.10.1038/srep17113. PubMed DOI PMC
Gupta U.; Naidu B. S.; Maitra U.; Singh A.; Shirodkar S. N.; Waghmare U. V.; Rao C. N. R. Characterization of Few-Layer 1T-MoSe2 and its Superior Performance in The Visible-Light Induced Hydrogen Evolution Reaction. APL Mater. 2014, 2 (9), 092802.10.1063/1.4892976. DOI
Chen K.; Ghosh R.; Meng X.; Roy A.; Kim J.-S.; He F.; Mason S. C.; Xu X.; Lin J.-F.; Akinwande D.; et al. Experimental Evidence of Exciton Capture by Mid-Gap Defects in CVD Grown Monolayer MoSe2. npj 2D Mater. Appl. 2017, 1 (1), 15.10.1038/s41699-017-0019-1. DOI
Zhang Y.; Chang T.-R.; Zhou B.; Cui Y.-T.; Yan H.; Liu Z.; Schmitt F.; Lee J.; Moore R.; Chen Y.; et al. Direct Observation of the Transition From Indirect to Direct Bandgap in Atomically Thin Epitaxial MoSe2. Nat. Nanotechnol. 2014, 9 (2), 111–115. 10.1038/nnano.2013.277. PubMed DOI
Arora A.; Nogajewski K.; Molas M.; Koperski M.; Potemski M. Exciton Band Structure in Layered MoSe2: from a Monolayer to the Bulk Limit. Nanoscale 2015, 7 (48), 20769–20775. 10.1039/C5NR06782K. PubMed DOI
Niu Y.; Gonzalez-Abad S.; Frisenda R.; Marauhn P.; Drüppel M.; Gant P.; Schmidt R.; Taghavi N. S.; Barcons D.; Molina-Mendoza A. J.; et al. Thickness-Dependent Differential Reflectance Spectra of Monolayer and Few-Layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials 2018, 8 (9), 725.10.3390/nano8090725. PubMed DOI PMC
Gillespie S. C.; van der Laan M.; Poonia D.; Maiti S.; Kinge S.; Siebbeles L. D. A.; Schall P. Optical Signatures of Charge- and Energy Transfer in TMDC/TMDC and TMDC/Perovskite Heterostructures. 2D Mater. 2024, 11 (2), 022005.10.1088/2053-1583/ad341c. DOI
Kam K. K.; Parkinson B. A. Detailed Photocurrent Spectroscopy of the Semiconducting Group VIB Transition Metal Dichalcogenides. J. Phys. Chem. 1982, 86 (4), 463–467. 10.1021/j100393a010. DOI
Beal A. R.; Hughes H. P. Kramers-Kronig Analysis of the Reflectivity Spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2. J. Phys. C: Solid State Phys. 1979, 12 (5), 881.10.1088/0022-3719/12/5/017. DOI
Qiu D. Y.; da Jornada F. H.; Louie S. G. Optical Spectrum of MoS2: Many-Body Effects and Diversity of Exciton States. Phys. Rev. Lett. 2013, 111 (21), 216805.10.1103/PhysRevLett.111.216805. PubMed DOI
Zhou W.; Zou X.; Najmaei S.; Liu Z.; Shi Y.; Kong J.; Lou J.; Ajayan P. M.; Yakobson B. I.; Idrobo J.-C. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Lett. 2013, 13 (6), 2615–2622. 10.1021/nl4007479. PubMed DOI
Li L.; Carter E. A. Defect-Mediated Charge-Carrier Trapping and Nonradiative Recombination in WSe2 Monolayers. J. Am. Chem. Soc. 2019, 141 (26), 10451–10461. 10.1021/jacs.9b04663. PubMed DOI
Ruppert C.; Chernikov A.; Hill H. M.; Rigosi A. F.; Heinz T. F. The Role of Electronic and Phononic Excitation in the Optical Response of Monolayer WS2 after Ultrafast Excitation. Nano Lett. 2017, 17 (2), 644–651. 10.1021/acs.nanolett.6b03513. PubMed DOI
Wang T.; Hopper T. R.; Mondal N.; Liu S.; Yao C.; Zheng X.; Torrisi F.; Bakulin A. A. Hot Carrier Cooling and Trapping in Atomically Thin WS2 Probed by Three-Pulse Femtosecond Spectroscopy. ACS Nano 2023, 17 (7), 6330–6340. 10.1021/acsnano.2c10479. PubMed DOI PMC
Poonia D.; Singh N.; Schulpen J. J. P. M.; van der Laan M.; Maiti S.; Failla M.; Kinge S.; Bol A. A.; Schall P.; Siebbeles L. D. A. Effects of the Structure and Temperature on the Nature of Excitons in the Mo0.6W0.4S2 Alloy. J. Phys. Chem. C 2022, 126 (4), 1931–1938. 10.1021/acs.jpcc.1c09806. PubMed DOI PMC
Pasanen H. P.; Khan R.; Odutola J. A.; Tkachenko N. V. Transient Absorption Spectroscopy of Films: Impact of Refractive Index. J. Phys. Chem. C 2024, 128 (15), 6167–6179. 10.1021/acs.jpcc.4c00981. PubMed DOI PMC
Walsh C. P.; Malizia J. P.; Sutton S. C.; Papanikolas J. M.; Cahoon J. F. Monolayer-like Exciton Recombination Dynamics of Multilayer MoSe2 Observed by Pump–Probe Microscopy. Nano Lett. 2024, 24 (4), 1431–1438. 10.1021/acs.nanolett.3c04754. PubMed DOI
Kumar N.; He J.; He D.; Wang Y.; Zhao H. Charge Carrier Dynamics in Bulk MoS2 Crystal Studied by Transient Absorption Microscopy. J. Appl. Phys. 2013, 113 (13), 133702.10.1063/1.4799110. DOI
Tsokkou D.; Yu X.; Sivula K.; Banerji N. The Role of Excitons and Free Charges in the Excited-State Dynamics of Solution-Processed Few-Layer MoS2 Nanoflakes. J. Phys. Chem. C 2016, 120 (40), 23286–23292. 10.1021/acs.jpcc.6b09267. DOI
Ataei S. S.; Varsano D.; Molinari E.; Rontani M. Evidence of Ideal Excitonic Insulator in Bulk MoS2 Under Pressure. Proc. Natl. Acad. Sci. U.S.A. 2021, 118 (13), e201011011810.1073/pnas.2010110118. PubMed DOI PMC
Schiettecatte P.; Hens Z.; Geiregat P. A Roadmap to Decipher Ultrafast Photophysics in Two-Dimensional Nanomaterials. J. Chem. Phys. 2023, 158 (1), 014202.10.1063/5.0134962. PubMed DOI
Combescot M., Shiau S.-Y.. Excitons and Cooper Pairs; Oxford University Press, 2016.
Combescot M.; Betbeder-Matibet O.; Dubin F. The Many-Body Physics of Composite Bosons. Phys. Rep. 2008, 463 (5), 215–320. 10.1016/j.physrep.2007.11.003. DOI
Schmitt-Rink S.; Chemla D. S.; Miller D. A. B. Theory of Transient Excitonic Optical Nonlinearities in Semiconductor Quantum-Well Structures. Phys. Rev. B:Condens. Matter Mater. Phys. 1985, 32 (10), 6601–6609. 10.1103/PhysRevB.32.6601. PubMed DOI
Wang G.; Gerber I. C.; Bouet L.; Lagarde D.; Balocchi A.; Vidal M.; Amand T.; Marie X.; Urbaszek B. Exciton States in Monolayer MoSe2: Impact on Interband Transitions. 2D Mater. 2015, 2 (4), 045005.10.1088/2053-1583/2/4/045005. DOI
Hao K.; Specht J. F.; Nagler P.; Xu L.; Tran K.; Singh A.; Dass C. K.; Schüller C.; Korn T.; Richter M.; et al. Neutral and Charged Inter-Valley Biexcitons in Monolayer MoSe2. Nat. Commun. 2017, 8 (1), 15552.10.1038/ncomms15552. PubMed DOI PMC
Pei J.; Yang J.; Wang X.; Wang F.; Mokkapati S.; Lü T.; Zheng J.-C.; Qin Q.; Neshev D.; Tan H. H.; et al. Excited State Biexcitons in Atomically Thin MoSe2. ACS Nano 2017, 11 (7), 7468–7475. 10.1021/acsnano.7b03909. PubMed DOI
Steinleitner P.; Merkl P.; Nagler P.; Mornhinweg J.; Schüller C.; Korn T.; Chernikov A.; Huber R. Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2. Nano Lett. 2017, 17 (3), 1455–1460. 10.1021/acs.nanolett.6b04422. PubMed DOI
Ceballos F.; Cui Q.; Bellus M. Z.; Zhao H. Exciton Formation in Monolayer Transition Metal Dichalcogenides. Nanoscale 2016, 8 (22), 11681–11688. 10.1039/C6NR02516A. PubMed DOI
Spies J. A.; Neu J.; Tayvah U. T.; Capobianco M. D.; Pattengale B.; Ostresh S.; Schmuttenmaer C. A. Terahertz Spectroscopy of Emerging Materials. J. Phys. Chem. C 2020, 124 (41), 22335–22346. 10.1021/acs.jpcc.0c06344. DOI
Hempel H.; Savenjie T. J.; Stolterfoht M.; Neu J.; Failla M.; Paingad V. C.; Kužel P.; Heilweil E. J.; Spies J. A.; Schleuning M.; et al. Predicting Solar Cell Performance from Terahertz and Microwave Spectroscopy. Adv. Energy Mater. 2022, 12 (13), 2102776.10.1002/aenm.202102776. DOI
Gabbett C.; Kelly A. G.; Coleman E.; Doolan L.; Carey T.; Synnatschke K.; Liu S.; Dawson A.; O’Suilleabhain D.; Munuera J.; et al. Understanding How Junction Resistances Impact the Conduction Mechanism in Nano-Networks. Nat. Commun. 2024, 15 (1), 4517.10.1038/s41467-024-48614-5. PubMed DOI PMC
He C.; Zhu L.; Zhao Q.; Huang Y.; Yao Z.; Du W.; He Y.; Zhang S.; Xu X. Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time-Resolved Terahertz Spectroscopy. Adv. Opt. Mater. 2018, 6 (19), 1800290.10.1002/adom.201800290. DOI
Smith N. V. Classical Generalization of the Drude Formula for the Optical Conductivity. Phys. Rev. B 2001, 64 (15), 155106.10.1103/PhysRevB.64.155106. DOI
Ulbricht R.; Hendry E.; Shan J.; Heinz T. F.; Bonn M. Carrier Dynamics in Semiconductors Studied with Time-Resolved Terahertz Spectroscopy. Rev. Mod. Phys. 2011, 83 (2), 543–586. 10.1103/RevModPhys.83.543. DOI
Grozema F. C.; Siebbeles L. D. A. Mechanism of Charge Transport in Self-Organizing Organic Materials. Int. Rev. Phys. Chem. 2008, 27 (1), 87–138. 10.1080/01442350701782776. DOI
Lauth J.; Failla M.; Klein E.; Klinke C.; Kinge S.; Siebbeles L. D. A. Photoexcitation of PbS Nanosheets Leads to Highly Mobile Charge Carriers and Stable Excitons. Nanoscale 2019, 11 (44), 21569–21576. 10.1039/C9NR07927K. PubMed DOI
Failla M.; Flórez F. G.; Salzmann B. B. V.; Vanmaekelbergh D.; Stoof H. T. C.; Siebbeles L. D. A. Effects of Pump Photon Energy on Generation and Ultrafast Relaxation of Excitons and Charge Carriers in CdSe Nanoplatelets. J. Phys. Chem. C 2023, 127 (4), 1899–1907. 10.1021/acs.jpcc.2c07292. PubMed DOI PMC
Lloyd-Hughes J.; Jeon T.-I. A Review of the Terahertz Conductivity of Bulk and Nano-Materials. J. Infrared Millim. Terahertz Waves 2012, 33 (9), 871–925. 10.1007/s10762-012-9905-y. DOI
Lauth J.; Kulkarni A.; Spoor F. C. M.; Renaud N.; Grozema F. C.; Houtepen A. J.; Schins J. M.; Kinge S.; Siebbeles L. D. A. Photogeneration and Mobility of Charge Carriers in Atomically Thin Colloidal InSe Nanosheets Probed by Ultrafast Terahertz Spectroscopy. J. Phys. Chem. Lett. 2016, 7 (20), 4191–4196. 10.1021/acs.jpclett.6b01835. PubMed DOI
Naftaly M.; Gregory A. Terahertz and Microwave Optical Properties of Single-Crystal Quartz and Vitreous Silica and the Behavior of the Boson Peak. Appl. Sci. 2021, 11 (15), 6733.10.3390/app11156733. DOI
Gonze X.; Amadon B.; Antonius G.; Arnardi F.; Baguet L.; Beuken J.-M.; Bieder J.; Bottin F.; Bouchet J.; Bousquet E.; et al. The ABINIT Project: Impact, Environment and Recent Developments. Comput. Phys. Commun. 2020, 248, 107042.10.1016/j.cpc.2019.107042. DOI