Jurassic Park approached: a coccid from Kimmeridgian cheirolepidiacean Aintourine Lebanese amber
Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40070804
PubMed Central
PMC11895504
DOI
10.1093/nsr/nwae200
PII: nwae200
Knihovny.cz E-zdroje
- Klíčová slova
- Jurassic amber, Lebanon, evolution, fossil insect, new family,
- Publikační typ
- časopisecké články MeSH
With the exception of a fly and a mite from the Triassic of Italy, all Mesozoic amber arthropods are from the Cretaceous. Late Jurassic Lebanese amber from Aintourine revealed a completely preserved adult coccid male (wing length 0.8 mm), Jankotejacoccus libanogloria gen. et sp. n., the earliest record of a plant sucking scale insect. Associated plant material included the cheirolepidiaceans Protopodocarpoxylon, Brachyphyllum and Classostrobus, plus Classopolis pollen, suggesting a forested temporary swamp habitat with ferns, tree ferns, water ferns, tall araucarian and ginkgoacean trees and shrubs. (Sub)tropic lateritic soil with vegetation debris underwent incomplete microbial decomposition in an anoxic water environment of peat swamp development. Strata-associated marine organisms support the Kimmeridgian age revealed by zircons. The discovery opens a new field of research in Jurassic amber fossils.
AMBA projekty; Tichá 4 81102 Bratislava Slovakia
Institute of Zoology v v i Slovak Academy of Sciences; Dúbravska cesta 9 84506 Bratislava Slovakia
Lebanese University Faculty of Sciences 2 Department of Natural Sciences Jdeideh Matn Lebanon
MGPalaeo Pty Ltd Malaga WA 6090 Australia
School of Biological Science; The University of Western Australia Crawley WA 6009 Australia
Zobrazit více v PubMed
Poinar GO. Life in Amber. Stanford University Press, California, US, 1992.
Austin JJ, Ross AJ, Smith AB et al. Problems of reproducibility–does geologically ancient DNA survive in amber–preserved insects? P R Soc London Series B 1997; 264: 467–74.10.1098/rspb.1997.0067 PubMed DOI PMC
Rasnitsyn AP, Bashkuev AS, Kopylov D et al. Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretaceous Res 2016; 61: 234–55.10.1016/j.cretres.2015.12.025 DOI
Labandeira CC. Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annu Rev Ecol Syst 1997; 28: 153–93.10.1146/annurev.ecolsys.28.1.153 DOI
Grimaldi D, Engel MS. Evolution of Insects. Cambridge, New York, Melbourne: Cambridge University Press, 2005.
Maksoud S, Azar D. Lebanese amber: latest updates. Palaeoentomology 2020; 3: 125–55.10.11646/palaeoentomology.3.2.2 DOI
Nohra Y, Azar D, Gèze R et al. New Jurassic amber outcrops from Lebanon. Terr Arthropod Rev 2013; 6: 27–51.10.1163/18749836-06021056 DOI
Valentin X, Gomez B, Daviero-Gomez V et al. Plant-dominated assemblage and invertebrates from the Lower Cenomanian of Jaunay-Clan, western France. C R Palevol 2014; 13: 443–54.10.1016/j.crpv.2014.04.001 DOI
Néraudeau D, Saint Martin S, Batten DJ et al. Palaeontology of the upper turonian paralic deposits of the Sainte-Mondane Formation, Aquitaine Basin, France. Geol Acta 2016; 14: 53–69.
Polette F. Les Assemblages Palynologiques Continentaux Du Crétacé Inférieur De France (Tithonien-Cénomanien): Paléoenvironnements, Paléoclimats, Stratigraphie et Taxinomie. PhD Thesis. Rennes: The University of Rennes, 2019.
Polette F, Licht A, Cincotta A et al. Palynological assemblage from the lower Cenomanian plant-bearing Lagerstätte of Jaunay-Clan-Ormeau-Saint-Denis (Vienne, western France): stratigraphic and paleoenvironmental implications. Rev Palaeobot Palynolo 2019; 271: 104102.10.1016/j.revpalbo.2019.104102 DOI
Moreau JD, Néraudeau D, Perrichot V. Conifers from the Cenomanian amber of Fouras (Charente-Maritime, western France). BSGF—Earth Sci Bull 2020; 191: 16.10.1051/bsgf/2020017 DOI
Drohojowska J, Szwedo J, Żyła D et al. Fossils reshape the Sternorrhyncha evolutionary tree (Insecta, Hemiptera). Sci Rep 2020; 10: 11390.10.1038/s41598-020-68220-x PubMed DOI PMC
Vea IM, Grimaldi DA. Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts. Sci Rep 2016; 6: 23487.10.1038/srep23487 PubMed DOI PMC
Szwedo J. The unity, diversity and conformity of bugs (Hemiptera) through time. Earth Environ Sci Trans R Soc Edinb 2018; 107: 109–28.
Gullan P, Martin JH. Sternorryncha. In: Resh V, Carde R (eds). Encyclopedia of Insects. San Diego: Academic Press, 2009: 957–67.
Hardy NB. The status and future of scale insect (Coccoidea) systematics. Syst Entomology 2018; 38: 453–8.10.1111/syen.12022 DOI
Hodgson C, Denno B, Watson GW. The infraorder coccomorpha (Insecta: hemiptera). Zootaxa 2021; 4979: 226227.10.11646/zootaxa.4979.1.24 PubMed DOI
Koteja J. Essay on the prehistory of the scale insects (Homoptera, Coccinea). Ann Zool 1985; 38: 461–503.
Wu SA, Xu H. A new coccoid family (Hemiptera: coccomorpha) for an unusual species of scale insect on podocarpus macrophyllus (Podocarpaceae) from southern China. Zootaxa 2022; 5120: 543–58.10.11646/zootaxa.5120.4.5 PubMed DOI
Wetzel R, Dubertret L. Carte Géologique Détallée au 1:50,000, Tripoli. Délégation Générale de France au Levant, Section Géologique, 1945.
Dubertret L. Carte Géologique Du Liban au 1/200000. RéPublique Libanaise. Ministère des Travaux Publics, Beyrouth, 1955.
Azar D, Gèze R, El-Samrani A et al. Jurassic Amber in Lebanon. Acta Geol Sin-Engl 2010; 84: 977–83.10.1111/j.1755-6724.2010.00228.x DOI
Arslan S, Gèze R, Abdul-Nour H. Fossils of Lebanon—Visual guide. In: Studies in Natural Sciences, XXI. The Lebanese University Publications Department, Lebanon, 1997.
Weaver CE. Clays,Muds, and Shales. Developments in Sedimentology 44, Elsevier; Amsterdam, 1989.
Grey IE, Li C. Hydroxylian pseudorutile derived from picroilmenite in the Murray Basin, southeastern Australia. Mineral Mag 2003; 67: 733–47.10.1180/0026461036740130 DOI
Tetsopgang S, Koyanagi J, Enami M et al. Hydroxylian pseudorutile in an adamellite from the Nkambe area, Cameroon. Mineral Mag 2003; 67: 509–16.10.1180/0026461036730113 DOI
Berner RA, Raiswell R. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 1984; 12: 365–8.10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2 DOI
Burnham AK, Sweeney JJ. A chemical kinetic model of vitrinite reflectance andmaturation. Geochim Cosmochim Ac 1989; 53: 2649–57.10.1016/0016-7037(89)90136-1 DOI
Jones TP, Scott AC, Cope M. Reflectance measurements and the temperature of formation of modern charcoals and implications for studies of fusain. B Soc Géol Fr 1991; 162: 193–200.
Scott AC, Glasspool IJ. Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Geology 2005; 33: 589–92.10.1130/G21474.1 DOI
Bunt JR, Joubert JP, Waanders FB. Coal char temperature profile estimation using optical reflectance for a commercial-scale Sasol-Lurgi FBDB gasifier. Fuel 2008; 87: 2849–55.10.1016/j.fuel.2008.04.002 DOI
McParland LC, Collinson ME, Scott AC et al. The use of reflectance values for the interpretation of natural and anthropogenic charcoal assemblages. Archaeol Anthrop Sci 2009; 1: 249–61.10.1007/s12520-009-0018-z DOI
Petersen HI, Lindström S. Synchronous wildfire activity rise and mire deforestation at the triassic–Jurassic boundary. PLoS One 2012; 7: e47236.10.1371/journal.pone.0047236 PubMed DOI PMC
Hudspith VA, Rimmer SM, Belcher CM. Latest Permian chars may derive from wildfires, not coal combustion. Geology 2014; 42: 879–82.10.1130/G35920.1 DOI
Otto A, Wilde V. Sesqui-, Di-, and triterpenoids as chemosystematic markers in extant conifers—a review. Bot Rev 2001; 67: 141–238.10.1007/BF02858076 DOI
Anderson KB. The nature and fate of natural resins in the geosphere. XII. Investigation of C-ring aromatic diterpenoids in Raritan amber by pyrolysis-GC-matrix isolation FTIR-MS. Geochem T 2006; 7: 2.10.1186/1467-4866-7-2 PubMed DOI PMC
Menor-Salván C, Najarro M, Velasco F et al. Simoneit, terpenoids in extracts of lower cretaceous ambers from the Basque-Cantabrian Basin (El Soplao, Cantabria, Spain): paleochemotaxonomic aspects. Org Geochem 2010; 41: 1089–103.10.1016/j.orggeochem.2010.06.013 DOI
Bray PS, Anderson KB. The nature and fate of natural resins in the geosphere XIII: a probable pinaceous resin from the early Cretaceous (Barremian), Isle of Wight. Geochem T 2008; 9: 3.10.1186/1467-4866-9-3 PubMed DOI PMC
Poulin JA, Helwig K. The characterisation of amber from deposit sites in western and northern Canada. J Archaeol Sci Rep 2016; 7: 155–68.
Dubertret L, Wetzel R. Carte Géologique Au 1:50,000, Feuille De Tripoli. République Libanaise, Beyrouth: Ministère des Travaux Publics, 1951.
Wright N, Zahirovic S, Müller RD et al. Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics. Biogeosciences 2013; 10: 1529–41.10.5194/bg-10-1529-2013 DOI
Behrensmeyer AK, Turner A. Taxonomic occurrences of Suidae recorded in the Paleobiology Database. Fossilworks; 2013. http://fossilworks.org (11 January 2023, date last accessed).
Tosolini AM, Mcloughlin S, Wagstaff BE et al. Cheirolepidiacean foliage and pollen from Cretaceous high-latitudes of southeastern Australia. Gondwana Res 2015; 27: 960–77.10.1016/j.gr.2013.11.008 DOI
Axsmith BJ, Jacobs BF. The conifer Frenelopsis ramosissima (Cheirolepidiaceae) in the Lower Cretaceous of Texas: systematic, biogeographical, and paleoecological implications. Int J Plant Sci 2005; 166: 327–37.10.1086/427202 DOI
Alvin KL. Cheirolepidiaceae: biology, structure and paleoecology. Rev Palaeobot Palynolo 1982; 37: 71–98.10.1016/0034-6667(82)90038-0 DOI
Ren D, Labandeira CC, Santiago-Blay JA et al. A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science 2009; 326: 840–7.10.1126/science.1178338 PubMed DOI PMC
Axsmith BJ. The vegetative structure of a Lower Cretaceous conifer from Arkansas: further implications for morphospecies concepts in the Cheirolepidiaceae. Cretaceous Res 2006; 27: 309–17.10.1016/j.cretres.2005.07.001 DOI
Spicer RA, McRees PA, Chapman JL. Cretaceous phytogeography and climate signals. In: Allen JRL, Hoskins BJ, Sellwood BW (eds). Palaeoclimates and Their Modelling. Bristol: The Royal Society, Chapman and Hall, 1994, 69–78.
Peyrot D, Barrón E, Polette F et al. Early cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France). Cretaceous Res 2019; 94: 168–89.10.1016/j.cretres.2018.10.011 DOI
Rodríguez-López JP, Peyrot D, Barrón E. Complex sedimentology and palaeohabitats of Holocene coastal deserts, their topographic controls, and analogues for the mid-Cretaceous of northern Iberia. Earth Sci Rev 2020; 201: 103075.10.1016/j.earscirev.2019.103075 DOI
Watson J. The Cheirolepidiaceae. In: Beck CB, (ed). Origin and Evolution of Gymnosperms. New York: Columbia University Press, 1988, 382–447.
Helby R, Morgan R, Partridge AD. A palynological zonation of the Australian Mesozoic. AAP Memoirs 1987; 4: 1–94.
Peyrot D, Ibilola O, Martin SK et al. Valanginian–Hauterivian vegetation inferred from palynological successions from the southern Perth Basin, Western Australia. Cretaceous Res 2023; 148: 105504. 10.1016/j.cretres.2023.105504 DOI
Philippe M, Bamford MK. A key to morphogenera used for Mesozoic conifer-like woods. Review Palaeobot Palynolo 2008; 148: 184–207.10.1016/j.revpalbo.2007.09.004 DOI
Néraudeau D, Saint Martin JP, Saint Martin S et al. Amber-and plant-bearing deposits from the Cenomanian of Neau (Mayenne, France). BSGF-Earth Sci Bull 2020; 191: 39.10.1051/bsgf/2020039 DOI
Steart DC, Needham J, Strullu-Derrien C et al. New evidence of the architecture and affinity of fossil trees from the Jurassic Purbeck Forest of southern England. Botany Letters 2023; 170: 165–82.10.1080/23818107.2023.2197973 DOI
Dutta S, Mallick M, Kumar K et al. Terpenoid composition and botanical affinity of Cretaceous resins from India and Myanmar. Int J Coal Geol 2011; 85: 49–55.10.1016/j.coal.2010.09.006 DOI
Kershaw A, Strickland K. A 10 year pollen trapping record from rainforest in northeastern Queensland, Australia. Rev Palaeobot Palyno 1990; 64: 281–8.10.1016/0034-6667(90)90143-7 DOI
Davis MB. Palynology after Y2K—understanding the source area of pollen in sediments. Annu Rev Earth and Pl Sc 2000; 28: 1–18.10.1146/annurev.earth.28.1.1 DOI
Sugita S. Theory of quantitative reconstruction of vegetation II: all you need is LOVE. Holocene 2007; 17: 243–57.10.1177/0959683607075838 DOI
Brock JM, Perry GL, Lee WG et al. Tree fern ecology in New Zealand: a model for southern temperate rainforests. Forest Ecol Manag 2016; 375: 112–26.10.1016/j.foreco.2016.05.030 DOI
Bruker AXS. DIFRAC.EVA—User Manual, Bruker AXS, Karlsruhe, Germany, 1–134. ICDD: PDF-2 Release 2010 (Database) Kabekkodu S (ed). Newtown Square, PA, USA: International Centre for Diffraction Data; 2010.
Philp RP. Fossil fuel biomarkers: applications and spectra. In: Methods in Geochemistry and Geophysics. Amsterdam: Elsevier, 1985; 23: 1–294.
Sýkorová I, Pickel W, Christanis K et al. Classification of huminite—ICCP system 1994. Int J Coal Geol 2005; 62: 85–106.10.1016/j.coal.2004.06.006 DOI
Pickel W, Kus J, Flores DS et al. Classification of liptinite—ICCP system 1994. Int J Coal Geol 2017; 169: 40–61.10.1016/j.coal.2016.11.004 DOI
Kwiecińska B, Petersen HJ. Graphite, semi-graphite, natural coke, and natura char classification—ICCP system. Int J Coal Geol 2004; 57: 99–116.10.1016/j.coal.2003.09.003 DOI
Lester E, Alvarez D, Borrego AG et al. The procedure used to develop a coal char classification—Commission III Combustion Working Group of the International Committee for Coal and Organic Petrology. Int J Coal Geol 2010; 81: 333–42.10.1016/j.coal.2009.10.015 DOI
Pouchou JL, Pichoir F, Beck CB.. Armstrong JT (ed). Microbeam Analysis. San Francisco: San Francisco Press, 1985, 104–6.
Maddison WP, Maddison DR. Mesquite: a modular system for evolutionary analysis. Version 3.81. http://www.mesquiteproject.org (22 December 2023, date last accessed).
Goloboff PA, Morales ME. TNT version 1.6, with a graphical interface for MacOS and Linux, including new routines in parallel. Cladistics 2023; 39: 144–53.10.1111/cla.12524 PubMed DOI
Nixon KC. ASADO, Version 1.85 TNT-MrBayes Slaver Version 2; Mxram 200 (vl. 5.30). Published by the author, Ithaca, New York. 2008.
Goloboff PA, Farris J, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008; 24: 774–86.10.1111/j.1096-0031.2008.00217.x DOI
Congreve CR, Lamsdell JC. Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Palaeontology 2016; 59: 447–65.10.1111/pala.12236 DOI
Goloboff PA, Torres A, Arias JS. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 2018; 34: 407–37.10.1111/cla.12205 PubMed DOI
Agnarsson I, Miller JA. Is ACCTRAN better than DELTRAN? Cladistics 2008; 24: 1032–8.10.1111/j.1096-0031.2008.00229.x PubMed DOI