Jurassic Park approached: a coccid from Kimmeridgian cheirolepidiacean Aintourine Lebanese amber

. 2025 Mar ; 12 (3) : nwae200. [epub] 20240611

Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40070804

With the exception of a fly and a mite from the Triassic of Italy, all Mesozoic amber arthropods are from the Cretaceous. Late Jurassic Lebanese amber from Aintourine revealed a completely preserved adult coccid male (wing length 0.8 mm), Jankotejacoccus libanogloria gen. et sp. n., the earliest record of a plant sucking scale insect. Associated plant material included the cheirolepidiaceans Protopodocarpoxylon, Brachyphyllum and Classostrobus, plus Classopolis pollen, suggesting a forested temporary swamp habitat with ferns, tree ferns, water ferns, tall araucarian and ginkgoacean trees and shrubs. (Sub)tropic lateritic soil with vegetation debris underwent incomplete microbial decomposition in an anoxic water environment of peat swamp development. Strata-associated marine organisms support the Kimmeridgian age revealed by zircons. The discovery opens a new field of research in Jurassic amber fossils.

AMBA projekty; Tichá 4 81102 Bratislava Slovakia

Department of Mineralogy Petrology and Economic Geology Faculty of Natural Science Comenius University; Ilkovičova 6 84215 Bratislava Slovakia

Earth Science Institute v v i Slovak Academy of Sciences; Dúbravská cesta 9 840 05 Bratislava and Ďumbierska 1 97401 Banská Bystrica Slovakia

Institute of Geology and Palaeontology Faculty of Science Charles University; Albertov 6 12843 Prague 2 Czech Republic

Institute of Rock Structure and Mechanics of the Czech Academy of Sciences 18209 Praha 8 Czech Republic

Institute of Zoology v v i Slovak Academy of Sciences; Dúbravska cesta 9 84506 Bratislava Slovakia

Integrative Insect Ecology Research Unit Department of Biology Faculty of Science Chulalongkorn University Pathumwan BKK 10330 Thailand

Lebanese University Faculty of Sciences 2 Department of Natural Sciences Jdeideh Matn Lebanon

MGPalaeo Pty Ltd Malaga WA 6090 Australia

School of Biological Science; The University of Western Australia Crawley WA 6009 Australia

Slovak Academy of Sciences Institute of Inorganic Chemistry v v i ; Dúbravská cesta 9 Bratislava 84536 Slovakia

Slovak Academy of Sciences Institute of Physics v v i Research Center of Quantum Informatics; Dúbravská cesta 9 Bratislava 84511 Slovakia

State Key Laboratory of Palaeobiology and Petroleum Stratigraphy Nanjing Institute of Geology and Palaeontology Chinese Academy of Sciences Nanjing 210008 China

University of Gdańsk Department of Invertebrate Zoology and Parasitology Laboratory of Evolutionary Entomology and Museum of Amber Inclusions; Museum of Amber Inclusions; PL 80308 Gdansk Poland

University of Rennes; UMR 6118 Géosciences Rennes Campus de Beaulieu Avenue du Général Leclerc 35042 Rennes France

Zobrazit více v PubMed

Poinar  GO. Life in Amber. Stanford University Press, California, US, 1992.

Austin  JJ, Ross  AJ, Smith  AB  et al.  Problems of reproducibility–does geologically ancient DNA survive in amber–preserved insects?  P R Soc London Series B  1997; 264: 467–74.10.1098/rspb.1997.0067 PubMed DOI PMC

Rasnitsyn  AP, Bashkuev  AS, Kopylov  D  et al.  Sequence and scale of changes in the terrestrial biota during the Cretaceous (based on materials from fossil resins). Cretaceous Res  2016; 61: 234–55.10.1016/j.cretres.2015.12.025 DOI

Labandeira  CC. Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annu Rev Ecol Syst  1997; 28: 153–93.10.1146/annurev.ecolsys.28.1.153 DOI

Grimaldi  D, Engel  MS. Evolution of Insects. Cambridge, New York, Melbourne: Cambridge University Press, 2005.

Maksoud  S, Azar  D. Lebanese amber: latest updates. Palaeoentomology  2020; 3: 125–55.10.11646/palaeoentomology.3.2.2 DOI

Nohra  Y, Azar  D, Gèze  R  et al.  New Jurassic amber outcrops from Lebanon. Terr Arthropod Rev  2013; 6: 27–51.10.1163/18749836-06021056 DOI

Valentin  X, Gomez  B, Daviero-Gomez  V  et al.  Plant-dominated assemblage and invertebrates from the Lower Cenomanian of Jaunay-Clan, western France. C R Palevol  2014; 13: 443–54.10.1016/j.crpv.2014.04.001 DOI

Néraudeau  D, Saint Martin  S, Batten  DJ  et al.  Palaeontology of the upper turonian paralic deposits of the Sainte-Mondane Formation, Aquitaine Basin, France. Geol Acta  2016; 14: 53–69.

Polette  F. Les Assemblages Palynologiques Continentaux Du Crétacé Inférieur De France (Tithonien-Cénomanien): Paléoenvironnements, Paléoclimats, Stratigraphie et Taxinomie. PhD Thesis. Rennes: The University of Rennes, 2019.

Polette  F, Licht  A, Cincotta  A  et al.  Palynological assemblage from the lower Cenomanian plant-bearing Lagerstätte of Jaunay-Clan-Ormeau-Saint-Denis (Vienne, western France): stratigraphic and paleoenvironmental implications. Rev Palaeobot Palynolo  2019; 271: 104102.10.1016/j.revpalbo.2019.104102 DOI

Moreau  JD, Néraudeau  D, Perrichot  V. Conifers from the Cenomanian amber of Fouras (Charente-Maritime, western France). BSGF—Earth Sci Bull  2020; 191: 16.10.1051/bsgf/2020017 DOI

Drohojowska  J, Szwedo  J, Żyła  D  et al.  Fossils reshape the Sternorrhyncha evolutionary tree (Insecta, Hemiptera). Sci Rep  2020; 10: 11390.10.1038/s41598-020-68220-x PubMed DOI PMC

Vea  IM, Grimaldi  DA. Putting scales into evolutionary time: the divergence of major scale insect lineages (Hemiptera) predates the radiation of modern angiosperm hosts. Sci Rep  2016; 6: 23487.10.1038/srep23487 PubMed DOI PMC

Szwedo  J. The unity, diversity and conformity of bugs (Hemiptera) through time. Earth Environ Sci Trans R Soc Edinb  2018; 107: 109–28.

Gullan  P, Martin  JH. Sternorryncha. In: Resh  V, Carde  R (eds). Encyclopedia of Insects. San Diego: Academic Press, 2009: 957–67.

Hardy  NB. The status and future of scale insect (Coccoidea) systematics. Syst Entomology  2018; 38: 453–8.10.1111/syen.12022 DOI

Hodgson  C, Denno  B, Watson  GW. The infraorder coccomorpha (Insecta: hemiptera). Zootaxa  2021; 4979: 226227.10.11646/zootaxa.4979.1.24 PubMed DOI

Koteja  J. Essay on the prehistory of the scale insects (Homoptera, Coccinea). Ann Zool  1985; 38: 461–503.

Wu  SA, Xu  H. A new coccoid family (Hemiptera: coccomorpha) for an unusual species of scale insect on podocarpus macrophyllus (Podocarpaceae) from southern China. Zootaxa  2022; 5120: 543–58.10.11646/zootaxa.5120.4.5 PubMed DOI

Wetzel  R, Dubertret  L. Carte Géologique Détallée au 1:50,000, Tripoli. Délégation Générale de France au Levant, Section Géologique, 1945.

Dubertret  L. Carte Géologique Du Liban au 1/200000. RéPublique Libanaise. Ministère des Travaux Publics, Beyrouth, 1955.

Azar  D, Gèze  R, El-Samrani  A  et al.  Jurassic Amber in Lebanon. Acta Geol Sin-Engl  2010; 84: 977–83.10.1111/j.1755-6724.2010.00228.x DOI

Arslan  S, Gèze  R, Abdul-Nour  H. Fossils of Lebanon—Visual guide. In: Studies in Natural Sciences, XXI. The Lebanese University Publications Department, Lebanon, 1997.

Weaver  CE. Clays,Muds, and Shales. Developments in Sedimentology 44, Elsevier;  Amsterdam, 1989.

Grey  IE, Li  C. Hydroxylian pseudorutile derived from picroilmenite in the Murray Basin, southeastern Australia. Mineral Mag  2003; 67: 733–47.10.1180/0026461036740130 DOI

Tetsopgang  S, Koyanagi  J, Enami  M  et al.  Hydroxylian pseudorutile in an adamellite from the Nkambe area, Cameroon. Mineral Mag  2003; 67: 509–16.10.1180/0026461036730113 DOI

Berner  RA, Raiswell  R. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology  1984; 12: 365–8.10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2 DOI

Burnham  AK, Sweeney  JJ. A chemical kinetic model of vitrinite reflectance andmaturation. Geochim Cosmochim Ac  1989; 53: 2649–57.10.1016/0016-7037(89)90136-1 DOI

Jones  TP, Scott  AC, Cope  M. Reflectance measurements and the temperature of formation of modern charcoals and implications for studies of fusain. B Soc Géol Fr  1991; 162: 193–200.

Scott  AC, Glasspool  IJ. Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Geology  2005; 33: 589–92.10.1130/G21474.1 DOI

Bunt  JR, Joubert  JP, Waanders  FB. Coal char temperature profile estimation using optical reflectance for a commercial-scale Sasol-Lurgi FBDB gasifier. Fuel  2008; 87: 2849–55.10.1016/j.fuel.2008.04.002 DOI

McParland  LC, Collinson  ME, Scott  AC  et al.  The use of reflectance values for the interpretation of natural and anthropogenic charcoal assemblages. Archaeol Anthrop Sci  2009; 1: 249–61.10.1007/s12520-009-0018-z DOI

Petersen  HI, Lindström  S. Synchronous wildfire activity rise and mire deforestation at the triassic–Jurassic boundary. PLoS One  2012; 7: e47236.10.1371/journal.pone.0047236 PubMed DOI PMC

Hudspith  VA, Rimmer  SM, Belcher  CM. Latest Permian chars may derive from wildfires, not coal combustion. Geology  2014; 42: 879–82.10.1130/G35920.1 DOI

Otto  A, Wilde  V. Sesqui-, Di-, and triterpenoids as chemosystematic markers in extant conifers—a review. Bot Rev  2001; 67: 141–238.10.1007/BF02858076 DOI

Anderson  KB. The nature and fate of natural resins in the geosphere. XII. Investigation of C-ring aromatic diterpenoids in Raritan amber by pyrolysis-GC-matrix isolation FTIR-MS. Geochem T  2006; 7: 2.10.1186/1467-4866-7-2 PubMed DOI PMC

Menor-Salván  C, Najarro  M, Velasco  F  et al.  Simoneit, terpenoids in extracts of lower cretaceous ambers from the Basque-Cantabrian Basin (El Soplao, Cantabria, Spain): paleochemotaxonomic aspects. Org Geochem  2010; 41: 1089–103.10.1016/j.orggeochem.2010.06.013 DOI

Bray  PS, Anderson  KB. The nature and fate of natural resins in the geosphere XIII: a probable pinaceous resin from the early Cretaceous (Barremian), Isle of Wight. Geochem T  2008; 9: 3.10.1186/1467-4866-9-3 PubMed DOI PMC

Poulin  JA, Helwig  K. The characterisation of amber from deposit sites in western and northern Canada. J Archaeol Sci Rep  2016; 7: 155–68.

Dubertret  L, Wetzel  R. Carte Géologique Au 1:50,000, Feuille De Tripoli. République Libanaise, Beyrouth: Ministère des Travaux Publics, 1951.

Wright  N, Zahirovic  S, Müller  RD  et al.  Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics. Biogeosciences  2013; 10: 1529–41.10.5194/bg-10-1529-2013 DOI

Behrensmeyer  AK, Turner  A. Taxonomic occurrences of Suidae recorded in the Paleobiology Database. Fossilworks; 2013. http://fossilworks.org (11 January 2023, date last accessed).

Tosolini  AM, Mcloughlin  S, Wagstaff  BE  et al.  Cheirolepidiacean foliage and pollen from Cretaceous high-latitudes of southeastern Australia. Gondwana Res  2015; 27: 960–77.10.1016/j.gr.2013.11.008 DOI

Axsmith  BJ, Jacobs  BF. The conifer Frenelopsis ramosissima (Cheirolepidiaceae) in the Lower Cretaceous of Texas: systematic, biogeographical, and paleoecological implications. Int J Plant Sci  2005; 166: 327–37.10.1086/427202 DOI

Alvin  KL. Cheirolepidiaceae: biology, structure and paleoecology. Rev Palaeobot Palynolo  1982; 37: 71–98.10.1016/0034-6667(82)90038-0 DOI

Ren  D, Labandeira  CC, Santiago-Blay  JA  et al.  A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies. Science  2009; 326: 840–7.10.1126/science.1178338 PubMed DOI PMC

Axsmith  BJ. The vegetative structure of a Lower Cretaceous conifer from Arkansas: further implications for morphospecies concepts in the Cheirolepidiaceae. Cretaceous Res  2006; 27: 309–17.10.1016/j.cretres.2005.07.001 DOI

Spicer  RA, McRees  PA, Chapman  JL. Cretaceous phytogeography and climate signals. In: Allen  JRL, Hoskins  BJ, Sellwood  BW (eds). Palaeoclimates and Their Modelling. Bristol: The Royal Society, Chapman and Hall, 1994, 69–78.

Peyrot  D, Barrón  E, Polette  F  et al.  Early cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France). Cretaceous Res  2019; 94: 168–89.10.1016/j.cretres.2018.10.011 DOI

Rodríguez-López  JP, Peyrot  D, Barrón  E. Complex sedimentology and palaeohabitats of Holocene coastal deserts, their topographic controls, and analogues for the mid-Cretaceous of northern Iberia. Earth Sci Rev  2020; 201: 103075.10.1016/j.earscirev.2019.103075 DOI

Watson  J. The Cheirolepidiaceae. In: Beck  CB, (ed). Origin and Evolution of Gymnosperms. New York: Columbia University Press, 1988, 382–447.

Helby  R, Morgan  R, Partridge  AD. A palynological zonation of the Australian Mesozoic. AAP Memoirs  1987; 4: 1–94.

Peyrot  D, Ibilola  O, Martin  SK  et al.  Valanginian–Hauterivian vegetation inferred from palynological successions from the southern Perth Basin, Western Australia. Cretaceous Res  2023; 148: 105504. 10.1016/j.cretres.2023.105504 DOI

Philippe  M, Bamford  MK. A key to morphogenera used for Mesozoic conifer-like woods. Review Palaeobot Palynolo  2008; 148: 184–207.10.1016/j.revpalbo.2007.09.004 DOI

Néraudeau  D, Saint Martin  JP, Saint Martin  S  et al.  Amber-and plant-bearing deposits from the Cenomanian of Neau (Mayenne, France). BSGF-Earth Sci Bull  2020; 191: 39.10.1051/bsgf/2020039 DOI

Steart  DC, Needham  J, Strullu-Derrien  C  et al.  New evidence of the architecture and affinity of fossil trees from the Jurassic Purbeck Forest of southern England. Botany Letters  2023; 170: 165–82.10.1080/23818107.2023.2197973 DOI

Dutta  S, Mallick  M, Kumar  K  et al.  Terpenoid composition and botanical affinity of Cretaceous resins from India and Myanmar. Int J Coal Geol  2011; 85: 49–55.10.1016/j.coal.2010.09.006 DOI

Kershaw  A, Strickland  K. A 10 year pollen trapping record from rainforest in northeastern Queensland, Australia. Rev Palaeobot Palyno  1990; 64: 281–8.10.1016/0034-6667(90)90143-7 DOI

Davis  MB. Palynology after Y2K—understanding the source area of pollen in sediments. Annu Rev Earth and Pl Sc  2000; 28: 1–18.10.1146/annurev.earth.28.1.1 DOI

Sugita  S. Theory of quantitative reconstruction of vegetation II: all you need is LOVE. Holocene  2007; 17: 243–57.10.1177/0959683607075838 DOI

Brock  JM, Perry  GL, Lee  WG  et al.  Tree fern ecology in New Zealand: a model for southern temperate rainforests. Forest Ecol Manag  2016; 375: 112–26.10.1016/j.foreco.2016.05.030 DOI

Bruker AXS. DIFRAC.EVA—User Manual, Bruker AXS, Karlsruhe, Germany, 1–134. ICDD: PDF-2 Release 2010 (Database)  Kabekkodu  S (ed). Newtown Square, PA, USA: International Centre for Diffraction Data; 2010.

Philp  RP. Fossil fuel biomarkers: applications and spectra. In: Methods in Geochemistry and Geophysics. Amsterdam: Elsevier, 1985; 23: 1–294.

Sýkorová  I, Pickel  W, Christanis  K  et al.  Classification of huminite—ICCP system 1994. Int J Coal Geol  2005; 62: 85–106.10.1016/j.coal.2004.06.006 DOI

Pickel  W, Kus  J, Flores  DS  et al.  Classification of liptinite—ICCP system 1994. Int J Coal Geol  2017; 169: 40–61.10.1016/j.coal.2016.11.004 DOI

Kwiecińska  B, Petersen  HJ. Graphite, semi-graphite, natural coke, and natura char classification—ICCP system. Int J Coal Geol  2004; 57: 99–116.10.1016/j.coal.2003.09.003 DOI

Lester  E, Alvarez  D, Borrego  AG  et al.  The procedure used to develop a coal char classification—Commission III Combustion Working Group of the International Committee for Coal and Organic Petrology. Int J Coal Geol  2010; 81: 333–42.10.1016/j.coal.2009.10.015 DOI

Pouchou  JL, Pichoir  F, Beck  CB.. Armstrong  JT (ed). Microbeam Analysis. San Francisco: San Francisco Press, 1985, 104–6.

Maddison  WP, Maddison  DR. Mesquite: a modular system for evolutionary analysis. Version 3.81. http://www.mesquiteproject.org (22 December 2023, date last accessed).

Goloboff  PA, Morales  ME. TNT version 1.6, with a graphical interface for MacOS and Linux, including new routines in parallel. Cladistics  2023; 39: 144–53.10.1111/cla.12524 PubMed DOI

Nixon  KC. ASADO, Version 1.85 TNT-MrBayes Slaver Version 2; Mxram 200 (vl. 5.30). Published by the author, Ithaca, New York. 2008.

Goloboff  PA, Farris  J, Nixon  KC. TNT, a free program for phylogenetic analysis. Cladistics  2008; 24: 774–86.10.1111/j.1096-0031.2008.00217.x DOI

Congreve  CR, Lamsdell  JC. Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Palaeontology  2016; 59: 447–65.10.1111/pala.12236 DOI

Goloboff  PA, Torres  A, Arias  JS. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics  2018; 34: 407–37.10.1111/cla.12205 PubMed DOI

Agnarsson  I, Miller  JA. Is ACCTRAN better than DELTRAN?  Cladistics  2008; 24: 1032–8.10.1111/j.1096-0031.2008.00229.x PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...