High levels of flame retardants in vehicle dust indicate ongoing use of brominated and organophosphate flame retardants in vehicle interiors

. 2025 Mar 15 ; 197 (4) : 396. [epub] 20250315

Jazyk angličtina Země Nizozemsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40088345
Odkazy

PubMed 40088345
PubMed Central PMC11910445
DOI 10.1007/s10661-025-13822-z
PII: 10.1007/s10661-025-13822-z
Knihovny.cz E-zdroje

Vehicles are unique indoor environments, with interiors dominated by plastic/synthetic materials and exposure to extremes of temperature and radiation, leading to substantial potential for emissions of plastic additives from vehicle materials and subsequent exposure to drivers and passengers. Flame retardants (FRs) and per- and polyfluoroalkyl substances (PFAS) were measured in 30 dust samples collected from dashboards, seats, and trunks of cars of the same make and model (year of manufacture 1996-2021) to evaluate levels in dust and time patterns in additive use across cars of different ages. PFAS were detected in all dust samples at low levels, while FRs were detected in all samples, with some compounds consistently exceeding µg/g levels, especially tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and decabromodiphenyl ether (BDE-209), substantially higher than in other indoor environments. Although cars were of the same model, large variations were observed in FR concentrations in dust between cars, emphasizing the challenge in generalizing FR exposures from vehicle dust. Concentrations of BDE-209 in vehicle dust did not decrease over the 1996-2021 period, suggesting that restrictions on DecaBDE have had limited impact, likely due to exemptions in regulations for the automotive industry. The high FR levels indicate ongoing use of both organophosphate and brominated FRs in vehicles on the European market, although flammability standards for interior car materials are not mandated by European regulations, and the continued presence of long-restricted FRs suggests the presence of recycled plastics in vehicles; this potential exposure source may be increasing as vehicle producers aim to improve material circularity.

Zobrazit více v PubMed

Abafe, O. A., & Martincigh, B. S. (2019). Concentrations, sources and human exposure implications of organophosphate esters in indoor dust from South Africa. Chemosphere,230, 239–247. 10.1016/j.chemosphere.2019.04.175 PubMed

Abbasi, G., Saini, A., Goosey, E., & Diamond, M. L. (2016). Product screening for sources of halogenated flame retardants in Canadian house and office dust. Science of the Total Environment,545–546, 299–307. 10.1016/j.scitotenv.2015.12.028 PubMed

Abbasi, G., Li, L., & Breivik, K. (2019). Global historical stocks and emissions of PBDEs. Environmental Science and Technology,53, 6330–6340. 10.1021/acs.est.8b07032 PubMed

Abdallah, M.A.-E., & Covaci, A. (2014). Organophosphate flame retardants in indoor dust from Egypt: Implications for human exposure. Environmental Science and Technology,48, 4782–4789. 10.1021/es501078s PubMed

Abdallah, M.A.-E., Nguyen, K.-H., Moehring, T., & Harrad, S. (2019). First insight into human extrahepatic metabolism of flame retardants: Biotransformation of EH-TBB and Firemaster-550 components by human skin subcellular fractions. Chemosphere,227, 1–8. 10.1016/j.chemosphere.2019.04.017 PubMed

Alaee, M., Arias, P., Sjödin, A., & Bergman, Å. (2003). An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment International,29, 683–689. 10.1016/S0160-4120(03)00121-1 PubMed

Ali, N., Harrad, S., Goosey, E., et al. (2011). “Novel” brominated flame retardants in Belgian and UK indoor dust: Implications for human exposure. Chemosphere,83, 1360–1365. 10.1016/j.chemosphere.2011.02.078 PubMed

Ali, N., Ali, L., Mehdi, T., et al. (2013). Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: Implication for human exposure via dust ingestion. Environment International,55, 62–70. 10.1016/j.envint.2013.02.001 PubMed

Ali, N., Eqani, S. A. M. A. S., Ismail, I. M. I., et al. (2016). Brominated and organophosphate flame retardants in indoor dust of Jeddah, Kingdom of Saudi Arabia: Implications for human exposure. Science of the Total Environment,569–570, 269–277. 10.1016/j.scitotenv.2016.06.093 PubMed

Allgood, J. M., Jimah, T., McClaskey, C. M., et al. (2017). Potential human exposure to halogenated flame-retardants in elevated surface dust and floor dust in an academic environment. Environmental Research,153, 55–62. 10.1016/j.envres.2016.11.010 PubMed

Al-Omran, L. S., & Harrad, S. (2016). Distribution pattern of legacy and “novel” brominated flame retardants in different particle size fractions of indoor dust in Birmingham, United Kingdom. Chemosphere,157, 124–131. 10.1016/j.chemosphere.2016.05.041 PubMed

Bajard, L., Negi, C. K., Mustieles, V., et al. (2021). Endocrine disrupting potential of replacement flame retardants – Review of current knowledge for nuclear receptors associated with reproductive outcomes. Environment International,153, 106550. 10.1016/j.envint.2021.106550 PubMed

Basham K (2020) How car manufacturers are using recycled plastic. Plastics Experthttps://www.plasticexpert.co.uk/car-manufacturers-using-recycled-plastic/#:~:text=Chrysler,made%20with%2064%25%20recycled%20plastics. Accessed 5 Jul 2024.

Bečanová, J., Melymuk, L., Vojta, Š, et al. (2016). Screening for perfluoroalkyl acids in consumer products, building materials and wastes. Chemosphere,164, 322–329. 10.1016/j.chemosphere.2016.08.112 PubMed

Besis, A., Christia, C., Poma, G., et al. (2017). Legacy and novel brominated flame retardants in interior car dust – Implications for human exposure. Environmental Pollution,230, 871–881. 10.1016/j.envpol.2017.07.032 PubMed

Björklund, J. A., Thuresson, K., & De Wit, C. A. (2009). Perfluoroalkyl compounds (PFCs) in indoor dust: Concentrations, human exposure estimates, and sources. Environmental Science and Technology,43, 2276–2281. 10.1021/es803201a PubMed

Blum, A., Behl, M., Birnbaum, L. S., et al. (2019). Organophosphate ester flame retardants: Are they a regrettable substitution for polybrominated diphenyl ethers? Environmental Science & Technology Letters,6, 638–649. 10.1021/acs.estlett.9b00582 PubMed PMC

Brandsma, S. H., De Boer, J., Van Velzen, M. J. M., & Leonards, P. E. G. (2014). Organophosphorus flame retardants (PFRs) and plasticizers in house and car dust and the influence of electronic equipment. Chemosphere,116, 3–9. 10.1016/j.chemosphere.2014.02.036 PubMed

Brommer, S., & Harrad, S. (2015). Sources and human exposure implications of concentrations of organophosphate flame retardants in dust from UK cars, classrooms, living rooms, and offices. Environment International,83, 202–207. 10.1016/j.envint.2015.07.002 PubMed

Brommer, S., Harrad, S., Van Den Eede, N., & Covaci, A. (2012). Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples. Journal of Environmental Monitoring,14, 2482. 10.1039/c2em30303e PubMed

Brown, F. R., Whitehead, T. P., Park, J.-S., et al. (2014). Levels of non-polybrominated diphenyl ether brominated flame retardants in residential house dust samples and fire station dust samples in California. Environmental Research,135, 9–14. 10.1016/j.envres.2014.08.022 PubMed PMC

Cao, Z., Xu, F., Covaci, A., et al. (2014). Differences in the seasonal variation of brominated and phosphorus flame retardants in office dust. Environment International,65, 100–106. 10.1016/j.envint.2013.12.011 PubMed

Cequier, E., Ionas, A. C., Covaci, A., et al. (2014). Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway. Environmental Science and Technology,48, 6827–6835. 10.1021/es500516u PubMed

Chokwe, T. B., Abafe, O. A., Mbelu, S. P., et al. (2020). A review of sources, fate, levels, toxicity, exposure and transformations of organophosphorus flame-retardants and plasticizers in the environment. Emerging Contaminants,6, 345–366. 10.1016/j.emcon.2020.08.004

Christia, C., Poma, G., Besis, A., et al. (2018). Legacy and emerging organophosphοrus flame retardants in car dust from Greece: Implications for human exposure. Chemosphere,196, 231–239. 10.1016/j.chemosphere.2017.12.132 PubMed

Cristale, J., Hurtado, A., Gómez-Canela, C., & Lacorte, S. (2016). Occurrence and sources of brominated and organophosphorus flame retardants in dust from different indoor environments in Barcelona, Spain. Environmental Research,149, 66–76. 10.1016/j.envres.2016.05.001 PubMed

Cristale, J., Aragão Belé, T. G., Lacorte, S., & Rodrigues De Marchi, M. R. (2018). Occurrence and human exposure to brominated and organophosphorus flame retardants via indoor dust in a Brazilian city. Environmental Pollution,237, 695–703. 10.1016/j.envpol.2017.10.110 PubMed

Demirtepe, H., Melymuk, L., Diamond, M. L., et al. (2019). Linking past uses of legacy SVOCs with today’s indoor levels and human exposure. Environment International,127, 653–663. 10.1016/j.envint.2019.04.001 PubMed

Dewapriya, P., Chadwick, L., Gorji, S. G., et al. (2023). Per- and polyfluoroalkyl substances (PFAS) in consumer products: Current knowledge and research gaps. Journal of Hazardous Materials Letters,4, 100086. 10.1016/j.hazl.2023.100086

ECHA. (2022). Annex XV report, proposal for identification of a substance of very high concern on the basis of the criteria set out in reach article 57. https://echa.europa.eu/proposals-to-identify-substances-of-very-high-concern-previous-consultations. Accessed 14 Aug 2024.

ECHA. (2023). Annex XV restriction report – Per- and polyfluoroalkyl substances (PFASs). https://echa.europa.eu/documents/10162/f605d4b5-7c17-7414-8823-b49b9fd43aea. Accessed 14 Aug 2024.

EPA. (2016). Fact Sheet: 2010/2015 PFOA Stewardship Program. United States Environmental Protection Agency. https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-20102015-pfoa-stewardship-program. Accessed 14 Aug 2024.

European Commission. (2004). European Commission Regulation (EC) No 850/2004 of the European Parliament and of the Council of 29 April 2004 on persistent organic pollutants and amending Directive 79/117/EEC. OJ L 158, 30.4.2004, p. 7–49. http://data.europa.eu/eli/reg/2004/850/oj

European Commission. (2006). European Commission Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. OJ L 396, 30.12.2006, p. 1–849. http://data.europa.eu/eli/reg/2006/1907/oj

European Commission. (2010) European Commission Regulation (EU) No 757/2010 of 24 August 2010 amending Regulation (EC) No 850/2004 of the European Parliament and of the Council on persistent organic pollutants as regards Annexes I and III. OJ L 223, 25.8.2010, p. 29–36. http://data.europa.eu/eli/reg/2010/757/oj

European Commission. (2019). European Commission Regulation (eu) 2019/2144 of the European parliament and of the council of 27 November 2019 on type-approval requirements for motor vehicles and their trailers, and systems, components and separate technical units intended for such vehicles, as regards their general safety and the protection of vehicle occupants and vulnerable road users, amending Regulation (EU) 2018/858 of the European Parliament and of the Council and repealing Regulations (EC) No 78/2009, (EC) No 79/2009 and (EC) No 661/2009 of the European Parliament and of the Council and Commission Regulations (EC) No 631/2009, (EU) No 406/2010, (EU) No 672/2010, (EU) No 1003/2010, (EU) No 1005/2010, (EU) No 1008/2010, (EU) No 1009/2010, (EU) No 19/2011, (EU) No 109/2011, (EU) No 458/2011, (EU) No 65/2012, (EU) No 130/2012, (EU) No 347/2012, (EU) No 351/2012, (EU) No 1230/2012 and (EU) 2015/166. PE/82/2019/REV/1 OJ L 325, 16.12.2019, p. 1–40. http://data.europa.eu/eli/reg/2019/2144/oj

Fan, X., Kubwabo, C., Rasmussen, P. E., & Wu, F. (2014). Simultaneous determination of thirteen organophosphate esters in settled indoor house dust and a comparison between two sampling techniques. Science of the Total Environment,491–492, 80–86. 10.1016/j.scitotenv.2013.12.127 PubMed

Fang, M., Webster, T. F., Gooden, D., et al. (2013). Investigating a novel flame retardant known as V6: Measurements in baby products, house dust, and car dust. Environmental Science and Technology,47, 4449–4454. 10.1021/es400032v PubMed PMC

Feo, M. L., Barón, E., Eljarrat, E., & Barceló, D. (2012). Dechlorane Plus and related compounds in aquatic and terrestrial biota: A review. Analytical and Bioanalytical Chemistry,404, 2625–2637. 10.1007/s00216-012-6161-x PubMed

Fraser, A. J., Webster, T. F., Watkins, D. J., et al. (2013). Polyfluorinated compounds in dust from homes, offices, and vehicles as predictors of concentrations in office workers’ serum. Environment International,60, 128–136. 10.1016/j.envint.2013.08.012 PubMed PMC

Fromme, H., Hilger, B., Kopp, E., et al. (2014). Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and “novel” brominated flame retardants in house dust in Germany. Environment International,64, 61–68. 10.1016/j.envint.2013.11.017 PubMed

García, M., Rodríguez, I., & Cela, R. (2007). Microwave-assisted extraction of organophosphate flame retardants and plasticizers from indoor dust samples. Journal of Chromatography A,1152, 280–286. 10.1016/j.chroma.2006.11.046 PubMed

Gevao, B., Shammari, F., & Ali, L. N. (2016). Polybrominated diphenyl ether levels in dust collected from cars in Kuwait: Implications for human exposure. Indoor and Built Environment,25, 106–113. 10.1177/1420326X14537284

Glüge, J., Scheringer, M., Cousins, I. T., et al. (2020). An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environmental Science: Processes & Impacts,22, 2345–2373. 10.1039/D0EM00291G PubMed PMC

Goosey, E., & Harrad, S. (2011). Perfluoroalkyl compounds in dust from Asian, Australian, European, and North American homes and UK cars, classrooms, and offices. Environment International,37, 86–92. 10.1016/j.envint.2010.08.001 PubMed

Harrad, S., & Abdallah, M.A.-E. (2011). Brominated flame retardants in dust from UK cars – Within-vehicle spatial variability, evidence for degradation and exposure implications. Chemosphere,82, 1240–1245. 10.1016/j.chemosphere.2010.12.038 PubMed

Harrad, S., Ibarra, C., Abdallah, M.A.-E., et al. (2008). Concentrations of brominated flame retardants in dust from United Kingdom cars, homes, and offices: Causes of variability and implications for human exposure. Environment International,34, 1170–1175. 10.1016/j.envint.2008.05.001 PubMed

Harrad, S., Abdallah, M.A.-E., & Oluseyi, T. (2016a). Polybrominated diphenyl ethers and polychlorinated biphenyls in dust from cars, homes, and offices in Lagos, Nigeria. Chemosphere,146, 346–353. 10.1016/j.chemosphere.2015.12.045 PubMed

Harrad, S., Brommer, S., & Mueller, J. F. (2016b). Concentrations of organophosphate flame retardants in dust from cars, homes, and offices: An international comparison. Emerging Contaminants,2, 66–72. 10.1016/j.emcon.2016.05.002

Harrad, S., Wemken, N., Drage, D. S., et al. (2019). Perfluoroalkyl substances in drinking water, indoor air and dust from Ireland: Implications for human exposure. Environmental Science and Technology,53, 13449–13457. 10.1021/acs.est.9b04604 PubMed

Herbstman, J. B., Sjödin, A., Kurzon, M., et al. (2010). Prenatal exposure to PBDEs and neurodevelopment. Environmental Health Perspectives,118, 712–719. 10.1289/ehp.0901340 PubMed PMC

Hoehn, R. M., Jahl, L. G., Herkert, N. J., et al. (2024). Flame retardant exposure in vehicles is influenced by use in seat foam and temperature. Environmental Science and Technology,58, 8825–8834. 10.1021/acs.est.3c10440 PubMed PMC

Hoh, E., & Zhu, H. R. A. (2005). Novel flame retardants, 1,2-Bis(2,4,6-tribromophenoxy)ethane and 2,3,4,5,6-pentabromoethylbenzene, in United States’ environmental samples. Environmental Science and Technology,39, 2472–2477. 10.1021/es048508f PubMed

Ingerowski, G., Friedle, A., & Thumulla, J. (2001). Chlorinated ethyl and isopropyl phosphoric acid triesters in the indoor environment - an inter-laboratory exposure study: Chlorinated ethyl and isopropyl phosphoric acid triesters. Indoor Air,11, 145–149. 10.1034/j.1600-0668.2001.011003145.x PubMed

Jánský, M. (2022). Šetřit musí všichni, dokonce i automobilky. Škoda nám ukázala, jak se to dá dělat chytře a odpovědně. In: Garáž.cz. https://www.garaz.cz/clanek/reportaze-setrit-musi-vsichni-dokonce-i-automobilky-skoda-nam-ukazala-jak-se-to-da-delat-chytre-a-odpovedne-21008957. Accessed 5 Jul 2024.

Kalachova, K., Hradkova, P., Lankova, D., et al. (2012). Occurrence of brominated flame retardants in household and car dust from the Czech Republic. Science of the Total Environment,441, 182–193. 10.1016/j.scitotenv.2012.09.061 PubMed

Kanazawa, A., Saito, I., Araki, A., et al. (2010). Association between indoor exposure to semi-volatile organic compounds and building-related symptoms among the occupants of residential dwellings. Indoor Air,20, 72–84. 10.1111/j.1600-0668.2009.00629.x PubMed

Karásková, P., Venier, M., Melymuk, L., et al. (2016). Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America. Environment International,94, 315–324. 10.1016/j.envint.2016.05.031 PubMed

Lagalante, A. F., Oswald, T. D., & Calvosa, F. C. (2009). Polybrominated diphenyl ether (PBDE) levels in dust from previously owned automobiles at United States dealerships. Environment International,35, 539–544. 10.1016/j.envint.2008.09.011 PubMed

Lagalante, A. F., Shedden, C. S., & Greenbacker, P. W. (2011). Levels of polybrominated diphenyl ethers (PBDEs) in dust from personal automobiles in conjunction with studies on the photochemical degradation of decabromodiphenyl ether (BDE-209). Environment International,37, 899–906. 10.1016/j.envint.2011.03.007 PubMed

LANXESS. (2017). Firemaster 550. LANXESS. https://lanxess.com/en-us/sustainability/material-topics/product-safety-assessments-strategy/product-safety-assessments-. Accessed 23 Jul 2024.

Legislative Services Branch. (2020). Consolidated federal laws of Canada, Motor Vehicle Restraint Systems and Booster Seats Safety Regulations. Justice Laws Website. https://laws-lois.justice.gc.ca/eng/regulations/sor-2010-90/page-1.html. Accessed 22 Jul 2024.

Liang, B., Yu, X., Mi, H., et al. (2019). Health risk assessment and source apportionment of VOCs inside new vehicle cabins: A case study from Chongqing, China. Atmospheric Pollution Research,10, 1677–1684. 10.1016/j.apr.2019.06.008

Lu, Q.-O., Jung, C.-C., Chao, H.-R., et al. (2023). Investigating the associations between organophosphate flame retardants (OPFRs) and fine particles in paired indoor and outdoor air: A probabilistic prediction model for deriving OPFRs in indoor environments. Environment International,174, 107871. 10.1016/j.envint.2023.107871 PubMed

Lyche, J. L., Rosseland, C., Berge, G., & Polder, A. (2015). Human health risk associated with brominated flame-retardants (BFRs). Environment International,74, 170–180. 10.1016/j.envint.2014.09.006 PubMed

McGrath, T. J., Morrison, P. D., Ball, A. S., & Clarke, B. O. (2018). Concentrations of legacy and novel brominated flame retardants in indoor dust in Melbourne, Australia: An assessment of human exposure. Environment International,113, 191–201. 10.1016/j.envint.2018.01.026 PubMed

Mizouchi, S., Ichiba, M., Takigami, H., et al. (2015). Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses. Chemosphere,123, 17–25. 10.1016/j.chemosphere.2014.11.028 PubMed

MPR China Certification GmbH. (2024). GB Standards and Norms for China. MPR China Certif. GmbH. https://www.china-certification.com/en/gb-standards/. Accessed 22 Jul 2024.

NIST. (2005). Certificate of analysis SRM® 2585 organic contaminants in house dust. US Dept. of Commerce - National Institute of Standards and Technology.

Niu, D., Qiu, Y., Du, X., et al. (2019). Novel brominated flame retardants in house dust from Shanghai, China: Levels, temporal variation, and human exposure. Environmental Sciences Europe,31, 6. 10.1186/s12302-019-0189-x

Office of the Federal Register. (2023a). 49 CFR § 571.302 - Standard No. 302; Flammability of interior materials. Transportation. Title 49. Office of the Federal Register, National Archives and Records Administration. [36 FR 22902, Dec. 2, 1971, as amended at 40 FR 14319, Mar. 31, 1975; 40 FR 42747, Sept. 16, 1975; 40 FR 56667, Dec. 4, 1975; 63 FR 28954, 28956, May 27, 1998; 63 FR 51003, Sept. 24, 1998]

Office of the Federal Register. (2023b). 49 CFR § 571.305 - Standard No. 305; Electric-powered vehicles: electrolyte spillage and electrical shock protection. Transportation. Title 49. Office of the Federal Register, National Archives and Records Administration. [65 FR 57988, Sept. 27, 2000, as amended at 66 FR 60160, Dec. 3, 2001; 69 FR 51399, Aug. 19, 2004; 72 FR 51972, Sept. 11, 2007; 75 FR 12141, Mar. 15, 2010; 75 FR 33527, June 14, 2010; 76 FR 45448, July 29, 2011; 80 FR 2325, Jan. 16, 2015; 82 FR 44960, Sept. 27, 2017; 84 FR 44257, Aug. 23, 2019]

Pinto-Vidal, F. A., Novák, J., Jílková, S. R., et al. (2024). Endocrine disrupting potential of total and bioaccessible extracts of dust from seven different types of indoor environment. Journal of Hazardous Materials,469, 133778. 10.1016/j.jhazmat.2024.133778 PubMed

Reddam, A., & Volz, D. C. (2021). Inhalation of two Prop 65-listed chemicals within vehicles may be associated with increased cancer risk. Environment International,149, 106402. 10.1016/j.envint.2021.106402 PubMed PMC

Reddam, A., Tait, G., Herkert, N., et al. (2020). Longer commutes are associated with increased human exposure to tris(1,3-dichloro-2-propyl) phosphate. Environment International,136, 105499. 10.1016/j.envint.2020.105499 PubMed PMC

Redin, L., Niinipuu, M., & Jansson, S. (2017). Occurrence of brominated diphenyl ethers, dibenzo- p- dioxins and dibenzofurans in foam materials in scrapped car seats from 1985 to 2012. Waste Management,61, 300–306. 10.1016/j.wasman.2016.12.010 PubMed

Reiner, J. L., Blaine, A. C., Higgins, C. P., et al. (2015). Polyfluorinated substances in abiotic standard reference materials. Analytical and Bioanalytical Chemistry,407, 2975–2983. 10.1007/s00216-013-7330-2 PubMed

Říha, J. (2022). Octavia obsahuje přes 250 kg plastu. Automobilka ho chce získávat z PET lahví i míchat s bioodpadem. In: autosalon.tv. https://www.skoda-storyboard.com/en/press-kits/skoda-enyaq-iv-press-kit-2/sustainability-recycled-materials-help-protect-the-environment/. Accessed 5 Jul 2024.

RPA. (2020). Risk reduction strategy and analysis of advantages and drawbacks for pentabromodiphenyl ether. Online: https://assets.publishing.service.gov.uk/media/5a7b2a3240f0b66a2fc05987/penta_bdpe_rrs.pdf. Accessed 14 Aug 2024.

Schäfer, T. (2021). Zpráva o trvale udržitelném rozvoji 2019/20. ŠKODA Auto. https://www.skoda-auto.cz/_doc/bab16a96-b4dc-4898-ac9d-30af41c4ad10. Accessed 22 Jul 2024.

Schildroth, S., Rodgers, K. M., Strynar, M., et al. (2022). Per-and polyfluoroalkyl substances (PFAS) and persistent chemical mixtures in dust from U.S. colleges. Environmental Research,206, 112530. 10.1016/j.envres.2021.112530 PubMed

Schreder, E. D., & La Guardia, M. J. (2014). Flame retardant transfers from U.S. households (dust and laundry wastewater) to the aquatic environment. Environmental Science and Technology,48, 11575–11583. 10.1021/es502227h PubMed

Secretariat of the Stockholm Convention. (2007). TetraBDE and pentaBDE. https://chm.pops.int/Implementation/Alternatives/AlternativestoPOPs/ChemicalslistedinAnnexA/TetraBDEandpentaBDE/tabid/5868/Default.aspx. Accessed 3 Jul 2024

Secretariat of the Stockholm Convention. (2017). Guidance for the inventory of PBDEs. https://chm.pops.int/Implementation/NationalImplementationPlans/GuidanceArchive/GuidancefortheinventoryofPBDEs/tabid/3171/Default. Accessed 3 Jul 2024.

Secretariat of the Stockholm Convention. (2024a). Information on the 16 chemicals added to the Stockholm Convention. In: BRSMeas. https://chm.pops.int/?tabid=2511. Accessed 2 Jul 2024.

Secretariat of the Stockholm Convention. (2024b). Stockholm Convention - Home page. In: pops.int. https://chm.pops.int/default.aspx. Accessed 2 Jul 2024.

Shindo, M., Ishida, M., Tokumura, M., et al. (2024). Determination of potential dermal exposure rates of phosphorus flame retardants via the direct contact with a car seat using artificial skin. Chemosphere,353, 141555. 10.1016/j.chemosphere.2024.141555 PubMed

Shoeib, M., Harner, T., Webster, G. M., et al. (2012). Legacy and current-use flame retardants in house dust from Vancouver, Canada. Environmental Pollution,169, 175–182. 10.1016/j.envpol.2012.01.043 PubMed

Škoda Auto a.s. (2024). Sustainability Report 2023. Škoda Storyboard. https://cdn.skoda-storyboard.com/2024/03/Skoda_Auto-Sustainability_Report-2023_EN_72a324ed.pdf?_gl=1*12x6sc2*GA4_ga*MWtudno5MWEtdGZwcC0yeGRlLWp3YXktajV5bno2dzB5c3Fu*GA4_ga_CR52PEW89M*MTcyMTc0MTAxOS4yLjEuMTcyMTc0MjcxNC4wLjAuNTExOTA2MDQ1. Accessed 23 Jul 2024.

Škoda Auto. (2021). Kde se vyrábí jednotlivé modely ŠKODA? In: ŠKODA Storyboard. https://www.skoda-auto.cz/_doc/bab16a96-b4dc-4898-ac9d-30af41c4ad10. Accessed 22 Jul 2024

Stapleton, H. M., Dodder, N. G., Offenberg, J. H., et al. (2005). Polybrominated diphenyl ethers in house dust and clothes dryer lint. Environmental Science and Technology,39, 925–931. 10.1021/es0486824 PubMed

Stapleton, H. M., Allen, J. G., Kelly, S. M., et al. (2008). Alternate and new brominated flame retardants detected in U.S. house dust. Environmental Science & Technology,42, 6910–6916. 10.1021/es801070p PubMed

Stapleton, H. M., Klosterhaus, S., Eagle, S., et al. (2009). Detection of organophosphate flame retardants in furniture foam and U.S. house dust. Environmental Science & Technology,43, 7490–7495. 10.1021/es9014019 PubMed PMC

Stapleton, H. M., Klosterhaus, S., Keller, A., et al. (2011). Identification of flame retardants in polyurethane foam collected from baby products. Environmental Science and Technology,45, 5323–5331. 10.1021/es2007462 PubMed PMC

Sugeng, E. J., De Cock, M., Leonards, P. E. G., & Van De Bor, M. (2018). Electronics, interior decoration and cleaning patterns affect flame retardant levels in the dust from Dutch residences. Science of the Total Environment,645, 1144–1152. 10.1016/j.scitotenv.2018.07.127 PubMed

Sunderland, E. M., Hu, X. C., Dassuncao, C., et al. (2019). A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. Journal of Exposure Science & Environmental Epidemiology,29, 131–147. 10.1038/s41370-018-0094-1 PubMed PMC

Tolaymat, T., Robey, N., Krause, M., et al. (2023). A critical review of perfluoroalkyl and polyfluoroalkyl substances (PFAS) landfill disposal in the United States. Science of the Total Environment,905, 167185. 10.1016/j.scitotenv.2023.167185 PubMed PMC

Tran, L. K., He, C., Phuc, D. H., et al. (2020). Monitoring the levels of brominated and organophosphate flame retardants in passenger cars: Utilisation of car air filters as active samplers. Journal of Environmental Sciences,91, 142–150. 10.1016/j.jes.2020.01.014 PubMed

UNECE. (2016). Economic Commission for Europe of the United Nations. Regulation No 34 of the Economic Commission for Europe of the United Nations (UNECE) — Uniform provisions concerning the approval of vehicles with regard to the prevention of fire risks [2016/1428] OJ L 231 26.08.2016, p. 41, ELI: http://data.europa.eu/eli/reg/2016/1428/oj

UNECE. (2024a). Transportation/Inland Transport Committee - Introduction. United Nations Economic Commission for Europe. https://unece.org/transport/vehicle-regulations/introduction. Accessed 22 Jul 2024.

UNECE. (2024b). World Forum for Harmonization of Vehicle Regulations (WP.29). United Nations Economic Commission for Europe. https://unece.org/transport/vehicle-regulations/world-forum-harmonization-vehicle-regulations-wp29. Accessed 22 Jul 2024.

UNECE. (2024c). UN Regulation No 118 – Uniform technical prescriptions concerning the burning behaviour and/or the capability to repel fuel or lubricant of materials used in the construction of certain categories of motor vehicles [2020/241] OJ L 48 21.02.2020, p. 26, ELI: http://data.europa.eu/eli/reg/2020/241/oj

Van Den Eede, N., Dirtu, A. C., Neels, H., & Covaci, A. (2011). Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust. Environment International,37, 454–461. 10.1016/j.envint.2010.11.010 PubMed

Van Der Veen, I., & De Boer, J. (2012). Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere,88, 1119–1153. 10.1016/j.chemosphere.2012.03.067 PubMed

Velázquez-Gómez, M., Hurtado-Fernández, E., & Lacorte, S. (2019). Differential occurrence, profiles and uptake of dust contaminants in the Barcelona urban area. Science of the Total Environment,648, 1354–1370. 10.1016/j.scitotenv.2018.08.058 PubMed

Venier, M., Audy, O., Vojta, Š, et al. (2016). Brominated flame retardants in the indoor environment — Comparative study of indoor contamination from three countries. Environment International,94, 150–160. 10.1016/j.envint.2016.04.029 PubMed

Vorkamp, K., & Rigét, F. F. (2014). A review of new and current-use contaminants in the Arctic environment: Evidence of long-range transport and indications of bioaccumulation. Chemosphere,111, 379–395. 10.1016/j.chemosphere.2014.04.019 PubMed

Wei, G.-L., Li, D.-Q., Zhuo, M.-N., et al. (2015). Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure. Environmental Pollution,196, 29–46. 10.1016/j.envpol.2014.09.012 PubMed

Wu, Y., Miller, G. Z., Gearhart, J., et al. (2019). Children’s car seats contain legacy and novel flame retardants. Environmental Science & Technology Letters,6, 14–20. 10.1021/acs.estlett.8b00568

Zhang, B., He, Y., Huang, Y., et al. (2020). Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: The emergence of PFAS alternatives in China. Environmental Pollution,263, 114461. 10.1016/j.envpol.2020.114461 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...