3D-Printed Nanocarbon Polymer Conductive Structures for Electromagnetic Interference Shielding
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
LM2023051
CzechNanoLab research infrastructure
CZ.02.01.01/00/22_008/0004587
TECHSCALE
European Union under the REFRESH- Research Excellence For REgion Sustainability and High-tech Industries
PubMed
40091441
PubMed Central
PMC12285637
DOI
10.1002/smtd.202401822
Knihovny.cz E-resources
- Keywords
- 3D printing, EMI shielding, electrodeposition, fused deposition modelling, polyaniline,
- Publication type
- Journal Article MeSH
Electromagnetic interference (EMI) significantly affects the performance and reliability of electronic devices. Although current metallic shielding materials are effective, they have drawbacks such as high density, limited flexibility, and poor corrosion resistance that limit their wider application in modern electronics. This study investigates the EMI shielding properties of 3D-printed conductive structures made from polylactic acid (PLA) infused with 0D carbon black (CB) and 1D carbon nanotube (CNT) fillers. This study demonstrates that CNT/PLA composites exhibit superior EMI shielding effectiveness (SE), achieving 43 dB at 10 GHz, compared to 22 dB for CB/PLA structures. Further, conductive coating of polyaniline (PANI) electrodeposition onto the CNT/PLA structures improves the SE to 54.5 dB at 10 GHz. This strategy allows fine control of PANI loading and relevant tuning of SE. Additionally, the 3D-printed PLA-based composites offer several advantages, including lightweight construction and enhanced corrosion resistance, positioning them as a sustainable alternative to traditional metal-based EMI shielding materials. These findings indicate that the SE of 3D-printed materials can be substantially improved through low-cost and straightforward PANI electrodeposition, enabling the production of customized EMI shielding materials with enhanced performance. This novel fabrication method offers promising potential for developing advanced shielding solutions in electronic devices.
See more in PubMed
Rao S. K., Prasad R., Wirel. Pers. Commun. 2018, 100, 145.
Iqbal A., Shahzad F., Hantanasirisakul K., Kim M.‐K., Kwon J., Hong J., Kim H., Kim D., Gogotsi Y., Koo C. M., Science 2020, 369, 446. PubMed
Shahzad F., Alhabeb M., Hatter C. B., Anasori B., Hong S. M., Koo C. M., Gogotsi Y., Science 2016, 353, 1137. PubMed
Cheng Y., Li X., Qin Y., Fang Y., Liu G., Wang Z., Matz J., Dong P., Shen J., Ye M., Sci. Adv. 2021, 7, eabj1663. PubMed PMC
Thomassin J. M., Jérôme C., Pardoen T., Bailly C., Huynen I., Detrembleur C., Mater. Sci. Eng. R: Rep. 2013, 74, 211.
Liu M., Wang Z., Song Z., Wang F., Zhao G., Zhu H., Jia Z., Guo Z., Kang F., Yang C., Nat. Commun. 2024, 15, 5486. PubMed PMC
Xie Y., Liu S., Huang K., Chen B., Shi P., Chen Z., Liu B., Liu K., Wu Z., Chen K., Qi Y., Liu Z., Adv. Mater. 2022, 34, 2202982. PubMed
Yang R., Gui X., Yao L., Hu Q., Yang L., Zhang H., Yao Y., Mei H., Tang Z., Nanomicro Lett. 2021, 13, 1. PubMed PMC
Zhou Z., Liu J., Zhang X., Tian D., Zhan Z., Lu C., Adv. Mater. Interfaces 2019, 6, 1802040.
Ahmad H. S., Hussain T., Nawab Y., Awais H., Compos. Sci. Technol. 2023, 240, 110097.
Iqbal A., Hassan T., Naqvi S. M., Gogotsi Y., Koo C. M., Nat. Rev. Electr. Eng. 2024, 1, 180.
Ismail I., Azis R. S., J. Mater. Sci. 2024, 59, 5293.
Zhou Y., Xue B., Xie L., Wu C. M., Zheng Q., Chin. J. Polym. Sci. (Engl. Ed.) 2024, 42, 693.
MacDonald E., Wicker R., Science 2016, 353, aaf2093. PubMed
Zhou G. X., Yu Y. G., Yang Z. H., Jia D. C., Poulin P., Zhou Y., Zhong J., ACS Nano 2022, 16, 3664. PubMed
Giannopoulos A. A., Mitsouras D., Yoo S.‐J., Liu P. P., Chatzizisis Y. S., Rybicki F. J., Nat. Rev. Cardiol. 2016, 13, 701. PubMed
Son J. H., Kim H., Choi Y., Lee H., Microsyst. Nanoeng. 2024, 10, 93. PubMed PMC
Shah J., Snider B., Clarke T., Kozutsky S., Lacki M., Hosseini A., Int. J. Adv. Manuf. Technol. 2019, 104, 3679.
Hansen C. J., Saksena R., Kolesky D. B., Vericella J. J., Kranz S. J., Muldowney G. P., Christensen K. T., Lewis J. A., Adv. Mater. 2013, 25, 96. PubMed
Lim J. X. Y., Pham Q. C., Virtual Phys. Prototyp. 2021, 16, 333.
Joshi S. C., Sheikh A. A., Virtual Phys. Prototyp. 2015, 10, 175.
Elakkad A. S., Int. J. Eng. Res. 2019, 8, 110.
Gardner L., Kyvelou P., Herbert G., Buchanan C., J. Constr. Steel Res. 2020, 172, 106233.
Xiao J., Ji G., Zhang Y., Ma G., Mechtcherine V., Pan J., Wang L., Ding T., Duan Z., Du S., Cem. Concr. Compos. 2021, 122, 104115.
Shalom H., Kapishnikov S., Brumfeld V., Naveh N., Tenne R., Lachman N., Sci. Rep. 2020, 10, 8892. PubMed PMC
Mappoli S., Ghosh K., Pumera M., Virtual Phys. Prototyp. 2024, 19, 2361139.
Mappoli S., Ghosh K., Pumera M., Virtual Phys. Prototyp. 2024, 19, 2326897.
Chen X., Yi Y., Duan R., Lu C., Zhou Z., Polymer (Guildf) 2024, 291, 126604.
Yi Y., Feng S., Zhou Z., Lu C., Compos. Part A Appl. Sci. Manuf. 2022, 163, 107232.
Liu J., Garcia J., Leahy L. M., Song R., Mullarkey D., Fei B., Dervan A., Shvets I. V., Stamenov P., Wang W., O'Brien F. J., Coleman J. N., Nicolosi V., Adv. Funct. Mater. 2023, 33, 2214196.
Blachowicz T., Ehrmann G., Ehrmann A., Macromol. Mater. Eng. 2023, 308, 2200692.
Al‐Saleh M. H., Saadeh W. H., Sundararaj U., Carbon 2013, 60, 146.
Lv Q., Tao X., Shi S., Li Y., Chen N., Compos. B Eng. 2022, 230, 109500.
Zhang C., Li Y., Kang W., Liu X., Wang Q., SusMat. 2021, 1, 127.
Verma P., Bansala T., Chauhan S. S., Kumar D., Deveci S., Kumar S., J. Mater. Sci. 2021, 56, 11769.
Wang L., Ma Z., Zhang Y., Chen L., Cao D., Gu J., SusMat 2021, 1, 413.
Roudný P., Syrový T., J. Manuf. Process 2022, 83, 667.
Bonaldi R. R., Siores E., Shah T., Synth. Met. 2014, 187, 1.
Zhou E., Xi J., Guo Y., Liu Y., Xu Z., Peng L., Gao W., Ying J., Chen Z., Gao C., Carbon 2018, 133, 316.
Song Q., Ye F., Yin X., Li W., Li H., Liu Y., Li K., Xie K., Li X., Fu Q., Cheng L., Zhang L., Wei B., Adv. Mater. 2017, 29, 1701583. PubMed
Saini P., Choudhary V., Vijayan N., Kotnala R. K., J. Phys. Chem. C 2012, 116, 13403.
Zare E. N., Makvandi P., Ashtari B., Rossi F., Motahari A., Perale G., J. Med. Chem. 2020, 63, 1. PubMed
Li P., Jin Z., Peng L., Zhao F., Xiao D., Jin Y., Yu G., Adv. Mater. 2018, 30, 1800124. PubMed
Liu P., Yan J., Gao X., Huang Y., Zhang Y., Electrochim. Acta. 2018, 272, 77.
Iqbal A., Sambyal P., Koo C. M., Adv. Funct. Mater. 2020, 30, 2000883.
Li J., Zhao L., Liu P., Langmuir 2023, 39, 14297. PubMed
Li N., Xiao Y., Xu C., Li H., Yang X., Int. J. Electrochem. Sci. 2013, 8, 118.
Zhang H., Cao G., Wang W., Yuan K., Xu B., Zhang W., Cheng J., Yang Y., Electrochim. Acta. 2009, 54, 1153.
Liu F., Luo S., Liu D., Chen W., Huang Y., Dong L., Wang L., ACS Appl. Mater. Interfaces 2017, 9, 33791. PubMed
Toušek J., Rutsch R., Toušková J., Mater. Chem. Phys. 2021, 260, 124153.
Tan W., Zhang X., Zhang H., Wu C., Su Y., Li P., Jiang J., Liu A., Li H., Yang Q., Zhang Y., Zhang Y., Wang Y., J. Mater. Sci.: Mater. Electron. 2023, 34, 769.
Bednarczyk K., Matysiak W., Tański T., Janeczek H., Schab‐Balcerzak E., Libera M., Sci. Rep. 2021, 11, 7487. PubMed PMC
Suba Lakshmi M., Wabaidur S. M., Alothman Z. A., Ragupathy D., Synth. Met. 2020, 270, 116591.
Shahid M. U., Mohamed N. M., Muhsan A. S., Bashiri R., Shamsudin A. E., Zaine S. N. A., Diam. Relat. Mater. 2019, 94, 242.
Tang Q., Wu J., Sun X., Li Q., Lin J., Langmuir 2009, 25, 5253. PubMed
Chen X., Liu H., Hu D., Liu H., Ma W., Ceram. Int. 2021, 47, 23749.
Isari A. A., Ghaffarkhah A., Hashemi S. A., Wuttke S., Arjmand M., Adv. Mater. 2024, 36, 2310683. PubMed
Wang X. X., Zheng Q., Zheng Y. J., Cao M. S., Carbon 2023, 206, 124.
Silva J. M. F., Indrusiak T., Barra G. M. O., Letichevsky S., Silva A. A., Soares B. G., FlatChem. 2024, 43, 100603.
Li X., Zeng B., Zheng Y., Zhou J., RSC Adv. 2024, 14, 20390. PubMed PMC