GA4GH Phenopacket-Driven Characterization of Genotype-Phenotype Correlations in Mendelian Disorders

. 2025 Mar 06 ; () : . [epub] 20250306

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, preprinty

Perzistentní odkaz   https://www.medvik.cz/link/pmid40093222

Grantová podpora
R35 HG011297 NHGRI NIH HHS - United States
RM1 HG010860 NHGRI NIH HHS - United States
U24 HG011449 NHGRI NIH HHS - United States

Comprehensively characterizing genotype-phenotype correlations (GPCs) in Mendelian disease would create new opportunities for improving clinical management and understanding disease biology. However, heterogeneous approaches to data sharing, reuse, and analysis have hindered progress in the field. We developed Genotype Phenotype Evaluation of Statistical Association (GPSEA), a software package that leverages the Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema to represent case-level clinical and genetic data about individuals. GPSEA applies an independent filtering strategy to boost statistical power to detect categorical GPCs represented by Human Phenotype Ontology terms. GPSEA additionally enables visualization and analysis of continuous phenotypes, clinical severity scores, and survival data such as age of onset of disease or clinical manifestations. We applied GPSEA to 85 cohorts with 6613 previously published individuals with variants in one of 80 genes associated with 122 Mendelian diseases and identified 225 significant GPCs, with 48 cohorts having at least one statistically significant GPC. These results highlight the power of standardized representations of clinical data for scalable discovery of GPCs in Mendelian disease.

Berlin Institute of Health at Charité Universitätsmedizin Berlin Germany

Bioinformatics Institute Agency for Science Technology and Research 30 Biopolis Street 07 01 Matrix Singapore 138671 Singapore

Center for Chronic Immunodeficiency University Hospital Freiburg Satellite center of RESiST Cluster of Excellence 2155 Hanover Medical School Hanover Germany

Center for Genomic Medicine Massachusetts General Hospital Boston MA USA

Centre of Cardiovascular Surgery and Transplantation Brno and Faculty of Medicine Masaryk University Brno Czech Republic

Clinic for Immunology and Rheumatology Hanover Medical School Hanover Germany

Department of Biomedical Informatics University of Colorado Anschutz Medical Campus Aurora CO 80045

Department of Biostatistics University of North Carolina Chapel Hill Chapel Hill North Carolina USA

Department of Genetics University of North Carolina Chapel Hill Chapel Hill North Carolina USA

Department of Human Genetics Donders Institute for Brain Cognition and Behaviour Radboud University Medical Center P O Box 9101 6500 HB Nijmegen the Netherlands

Department of Immunology 2nd Faculty of Medicine Charles University and University Hospital in Motol Prague Czech Republic

Department of Ophthalmology University Clinic Marburg Campus Fulda Fulda Germany

Department of Pediatrics Division of Genetic Medicine University of Washington 1959 NE Pacific Street Box 357371 Seattle WA 98195 USA

Department of Pediatrics Faculty of Medicine and University Hospital Carl Gustav Carus Technische Universität Dresden Dresden Germany

Deutsches Herzzentrum der Charité Berlin Germany

Division of Environmental Genomics and Systems Biology Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley CA 94720 USA

Division of Genetics and Genomics Boston Children's Hospital Boston MA USA

ELLIS the European Laboratory for Learning and Intelligent Systems

Institute of Medical and Human Genetics Charité Universitätsmedizin Berlin Germany

North West Thames Regional Genetics Service Northwick Park and St Mark's Hospitals London UK

Program in Medical and Population Genetics Broad Institute of MIT and Harvard Cambridge MA USA

Rare Care Centre Perth Children's Hospital Nedlands WA 6009 Australia

SingHealth Duke NUS Institute of Precision Medicine 5 Hospital Drive Level 9 Singapore 169609 Singapore

The Jackson Laboratory for Genomic Medicine 10 Discovery Drive Farmington CT 06032 USA

William Harvey Research Institute Faculty of Medicine and Dentistry Queen Mary University of London Charterhouse Square London EC1M 6BQ UK

Zobrazit více v PubMed

Ries M. & Gal A. Genotype–phenotype correlation in Fabry disease. in Fabry Disease: Perspectives from 5 Years of FOS (eds. Mehta A., Beck M. & Sunder-Plassmann G.) (Oxford PharmaGenesis, Oxford, 2006). PubMed

Bettegowda C. et al. Genotype-phenotype correlations in neurofibromatosis and their potential clinical use. Neurology 97, S91–S98 (2021). PubMed PMC

MacRae C. A. & Seidman C. E. Closing the Genotype-Phenotype Loop for Precision Medicine. Circulation 136, 1492–1494 (2017). PubMed PMC

Robinson P. N. et al. The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am. J. Hum. Genet. 83, 610–615 (2008). PubMed PMC

Köhler S. et al. The Human Phenotype Ontology in 2017. Nucleic Acids Res. 45, D865–D876 (2017). PubMed PMC

Köhler S. et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42, D966–D974 (2014). PubMed PMC

Pehlivan D. et al. Structural variant allelic heterogeneity in MECP2 duplication syndrome provides insight into clinical severity and variability of disease expression. Genome Med. 16, 146 (2024). PubMed PMC

Alecu J. E. et al. Quantitative natural history modeling of HPDL-related disease based on cross-sectional data reveals genotype-phenotype correlations. Genet. Med. 101349 (2024). PubMed PMC

Dardas Z. et al. NODAL variants are associated with a continuum of laterality defects from simple D-transposition of the great arteries to heterotaxy. Genome Med. 16, 53 (2024). PubMed PMC

Bosch E. et al. Elucidating the clinical and molecular spectrum of SMARCC2-associated NDD in a cohort of 65 affected individuals. Genet. Med. 25, 100950 (2023). PubMed

Calame D. G. et al. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am. J. Hum. Genet. 110, 1394–1413 (2023). PubMed PMC

Guatibonza Moreno P. et al. At a glance: the largest Niemann-Pick type C1 cohort with 602 patients diagnosed over 15 years. Eur. J. Hum. Genet. 31, 1108–1116 (2023). PubMed PMC

Dingemans A. J. M. et al. The phenotypic spectrum and genotype-phenotype correlations in 106 patients with variants in major autism gene CHD8. Transl. Psychiatry 12, 421 (2022). PubMed PMC

Crawford K. et al. Computational analysis of 10,860 phenotypic annotations in individuals with SCN2A-related disorders. Genet. Med. 23, 1263–1272 (2021). PubMed PMC

van der Spek J. et al. Inherited variants in CHD3 show variable expressivity in Snijders Blok-Campeau syndrome. Genet. Med. 24, 1283–1296 (2022). PubMed

Zhang C. et al. Novel pathogenic variants and quantitative phenotypic analyses of Robinow syndrome: WNT signaling perturbation and phenotypic variability. HGG Adv. 3, 100074 (2022). PubMed PMC

Hebebrand M. et al. The mutational and phenotypic spectrum of TUBA1A-associated tubulinopathy. Orphanet journal of rare diseases 14, (2019). PubMed PMC

Casanova E. L., Gerstner Z., Sharp J. L., Casanova M. F. & Feltus F. A. Widespread genotype-phenotype correlations in intellectual disability. Front. Psychiatry 9, 535 (2018). PubMed PMC

van der Sluijs P. J. et al. The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin-Siris syndrome. Genet. Med. 21, 1295–1307 (2019). PubMed PMC

Chiorean A. et al. Large scale genotype- and phenotype-driven machine learning in Von Hippel-Lindau disease. Hum. Mutat. 43, 1268–1285 (2022). PubMed PMC

Chiu T. L.-H. et al. Phenomic analysis of chronic granulomatous disease reveals more severe integumentary infections in X-linked compared with autosomal recessive chronic granulomatous disease. Front. Immunol. 12, 803763 (2021). PubMed PMC

Jacobsen J. O. B. et al. The GA4GH Phenopacket schema defines a computable representation of clinical data. Nat. Biotechnol. 40, 817–820 (2022). PubMed PMC

Danis D. et al. A corpus of GA4GH Phenopackets: case-level phenotyping for genomic diagnostics and discovery. bioRxiv (2024) doi:10.1101/2024.05.29.24308104. PubMed DOI PMC

Danis D. et al. Phenopacket-tools: Building and validating GA4GH Phenopackets. PLoS One 18, e0285433 (2023). PubMed PMC

Ladewig M. S. et al. GA4GH Phenopackets: A Practical Introduction. Adv. Genet. 4, 2200016 (2023). PubMed PMC

Gracia-Diaz C. et al. Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders. Nat. Commun. 14, 4109 (2023). PubMed PMC

Alkan C., Coe B. P. & Eichler E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011). PubMed PMC

Bourgon R., Gentleman R. & Huber W. Independent filtering increases detection power for high-throughput experiments. Proc. Natl. Acad. Sci. U. S. A. 107, 9546–9551 (2010). PubMed PMC

Benjamini Y. Discovering the false discovery rate: False Discovery Rate. J. R. Stat. Soc. Series B Stat. Methodol. 72, 405–416 (2010).

Jordan V. K. et al. Genotype-phenotype correlations in individuals with pathogenic RERE variants. Hum. Mutat. 39, 666–675 (2018). PubMed PMC

Xu C. et al. Genotype-phenotype correlation study and mutational and hormonal analysis in a Chinese cohort with 21-hydroxylase deficiency. Mol. Genet. Genomic Med. 7, e671 (2019). PubMed PMC

Chang E. H. & Zabner J. Precision genomic medicine in cystic fibrosis. Clin. Transl. Sci. 8, 606–610 (2015). PubMed PMC

Grossmann S., Bauer S., Robinson P. N. & Vingron M. Improved detection of overrepresentation of Gene-Ontology annotations with parent child analysis. Bioinformatics 23, 3024–3031 (2007). PubMed

Nannenberg E. A. et al. Effect of ascertainment bias on estimates of patient mortality in inherited cardiac diseases. Circ. Genom. Precis. Med. 11, e001797 (2018). PubMed

Corvol H. et al. Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis. Nat. Commun. 6, 8382 (2015). PubMed PMC

Dareng E. O. et al. Polygenic risk modeling for prediction of epithelial ovarian cancer risk. Eur. J. Hum. Genet. 30, 349–362 (2022). PubMed PMC

Graefe A. S. L. et al. An ontology-based rare disease common data model harmonising international registries, FHIR, and Phenopackets. Sci. Data 12, 234 (2025). PubMed PMC

de Vries B. B. et al. Clinical studies on submicroscopic subtelomeric rearrangements: a checklist. J. Med. Genet. 38, 145–150 (2001). PubMed PMC

Bland J. M. & Altman D. G. The logrank test. BMJ 328, 1073 (2004). PubMed PMC

UniProt Consortium. UniProt: The universal protein knowledgebase in 2025. Nucleic Acids Res. (2024) doi:10.1093/nar/gkae1010. PubMed DOI PMC

Amberger J. S., Bocchini C. A., Scott A. F. & Hamosh A. OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 47, D1038–D1043 (2019). PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé