GA4GH Phenopacket-Driven Characterization of Genotype-Phenotype Correlations in Mendelian Disorders
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
R35 HG011297
NHGRI NIH HHS - United States
RM1 HG010860
NHGRI NIH HHS - United States
U24 HG011449
NHGRI NIH HHS - United States
PubMed
40093222
PubMed Central
PMC11908317
DOI
10.1101/2025.03.05.25323315
PII: 2025.03.05.25323315
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Comprehensively characterizing genotype-phenotype correlations (GPCs) in Mendelian disease would create new opportunities for improving clinical management and understanding disease biology. However, heterogeneous approaches to data sharing, reuse, and analysis have hindered progress in the field. We developed Genotype Phenotype Evaluation of Statistical Association (GPSEA), a software package that leverages the Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema to represent case-level clinical and genetic data about individuals. GPSEA applies an independent filtering strategy to boost statistical power to detect categorical GPCs represented by Human Phenotype Ontology terms. GPSEA additionally enables visualization and analysis of continuous phenotypes, clinical severity scores, and survival data such as age of onset of disease or clinical manifestations. We applied GPSEA to 85 cohorts with 6613 previously published individuals with variants in one of 80 genes associated with 122 Mendelian diseases and identified 225 significant GPCs, with 48 cohorts having at least one statistically significant GPC. These results highlight the power of standardized representations of clinical data for scalable discovery of GPCs in Mendelian disease.
Berlin Institute of Health at Charité Universitätsmedizin Berlin Germany
Center for Genomic Medicine Massachusetts General Hospital Boston MA USA
Clinic for Immunology and Rheumatology Hanover Medical School Hanover Germany
Department of Biomedical Informatics University of Colorado Anschutz Medical Campus Aurora CO 80045
Department of Biostatistics University of North Carolina Chapel Hill Chapel Hill North Carolina USA
Department of Genetics University of North Carolina Chapel Hill Chapel Hill North Carolina USA
Department of Ophthalmology University Clinic Marburg Campus Fulda Fulda Germany
Deutsches Herzzentrum der Charité Berlin Germany
Division of Genetics and Genomics Boston Children's Hospital Boston MA USA
ELLIS the European Laboratory for Learning and Intelligent Systems
Institute of Medical and Human Genetics Charité Universitätsmedizin Berlin Germany
North West Thames Regional Genetics Service Northwick Park and St Mark's Hospitals London UK
Program in Medical and Population Genetics Broad Institute of MIT and Harvard Cambridge MA USA
Rare Care Centre Perth Children's Hospital Nedlands WA 6009 Australia
The Jackson Laboratory for Genomic Medicine 10 Discovery Drive Farmington CT 06032 USA
Zobrazit více v PubMed
Ries M. & Gal A. Genotype–phenotype correlation in Fabry disease. in Fabry Disease: Perspectives from 5 Years of FOS (eds. Mehta A., Beck M. & Sunder-Plassmann G.) (Oxford PharmaGenesis, Oxford, 2006). PubMed
Bettegowda C. et al. Genotype-phenotype correlations in neurofibromatosis and their potential clinical use. Neurology 97, S91–S98 (2021). PubMed PMC
MacRae C. A. & Seidman C. E. Closing the Genotype-Phenotype Loop for Precision Medicine. Circulation 136, 1492–1494 (2017). PubMed PMC
Robinson P. N. et al. The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am. J. Hum. Genet. 83, 610–615 (2008). PubMed PMC
Köhler S. et al. The Human Phenotype Ontology in 2017. Nucleic Acids Res. 45, D865–D876 (2017). PubMed PMC
Köhler S. et al. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42, D966–D974 (2014). PubMed PMC
Pehlivan D. et al. Structural variant allelic heterogeneity in MECP2 duplication syndrome provides insight into clinical severity and variability of disease expression. Genome Med. 16, 146 (2024). PubMed PMC
Alecu J. E. et al. Quantitative natural history modeling of HPDL-related disease based on cross-sectional data reveals genotype-phenotype correlations. Genet. Med. 101349 (2024). PubMed PMC
Dardas Z. et al. NODAL variants are associated with a continuum of laterality defects from simple D-transposition of the great arteries to heterotaxy. Genome Med. 16, 53 (2024). PubMed PMC
Bosch E. et al. Elucidating the clinical and molecular spectrum of SMARCC2-associated NDD in a cohort of 65 affected individuals. Genet. Med. 25, 100950 (2023). PubMed
Calame D. G. et al. Monoallelic variation in DHX9, the gene encoding the DExH-box helicase DHX9, underlies neurodevelopment disorders and Charcot-Marie-Tooth disease. Am. J. Hum. Genet. 110, 1394–1413 (2023). PubMed PMC
Guatibonza Moreno P. et al. At a glance: the largest Niemann-Pick type C1 cohort with 602 patients diagnosed over 15 years. Eur. J. Hum. Genet. 31, 1108–1116 (2023). PubMed PMC
Dingemans A. J. M. et al. The phenotypic spectrum and genotype-phenotype correlations in 106 patients with variants in major autism gene CHD8. Transl. Psychiatry 12, 421 (2022). PubMed PMC
Crawford K. et al. Computational analysis of 10,860 phenotypic annotations in individuals with SCN2A-related disorders. Genet. Med. 23, 1263–1272 (2021). PubMed PMC
van der Spek J. et al. Inherited variants in CHD3 show variable expressivity in Snijders Blok-Campeau syndrome. Genet. Med. 24, 1283–1296 (2022). PubMed
Zhang C. et al. Novel pathogenic variants and quantitative phenotypic analyses of Robinow syndrome: WNT signaling perturbation and phenotypic variability. HGG Adv. 3, 100074 (2022). PubMed PMC
Hebebrand M. et al. The mutational and phenotypic spectrum of TUBA1A-associated tubulinopathy. Orphanet journal of rare diseases 14, (2019). PubMed PMC
Casanova E. L., Gerstner Z., Sharp J. L., Casanova M. F. & Feltus F. A. Widespread genotype-phenotype correlations in intellectual disability. Front. Psychiatry 9, 535 (2018). PubMed PMC
van der Sluijs P. J. et al. The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin-Siris syndrome. Genet. Med. 21, 1295–1307 (2019). PubMed PMC
Chiorean A. et al. Large scale genotype- and phenotype-driven machine learning in Von Hippel-Lindau disease. Hum. Mutat. 43, 1268–1285 (2022). PubMed PMC
Chiu T. L.-H. et al. Phenomic analysis of chronic granulomatous disease reveals more severe integumentary infections in X-linked compared with autosomal recessive chronic granulomatous disease. Front. Immunol. 12, 803763 (2021). PubMed PMC
Jacobsen J. O. B. et al. The GA4GH Phenopacket schema defines a computable representation of clinical data. Nat. Biotechnol. 40, 817–820 (2022). PubMed PMC
Danis D. et al. A corpus of GA4GH Phenopackets: case-level phenotyping for genomic diagnostics and discovery. bioRxiv (2024) doi:10.1101/2024.05.29.24308104. PubMed DOI PMC
Danis D. et al. Phenopacket-tools: Building and validating GA4GH Phenopackets. PLoS One 18, e0285433 (2023). PubMed PMC
Ladewig M. S. et al. GA4GH Phenopackets: A Practical Introduction. Adv. Genet. 4, 2200016 (2023). PubMed PMC
Gracia-Diaz C. et al. Gain and loss of function variants in EZH1 disrupt neurogenesis and cause dominant and recessive neurodevelopmental disorders. Nat. Commun. 14, 4109 (2023). PubMed PMC
Alkan C., Coe B. P. & Eichler E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011). PubMed PMC
Bourgon R., Gentleman R. & Huber W. Independent filtering increases detection power for high-throughput experiments. Proc. Natl. Acad. Sci. U. S. A. 107, 9546–9551 (2010). PubMed PMC
Benjamini Y. Discovering the false discovery rate: False Discovery Rate. J. R. Stat. Soc. Series B Stat. Methodol. 72, 405–416 (2010).
Jordan V. K. et al. Genotype-phenotype correlations in individuals with pathogenic RERE variants. Hum. Mutat. 39, 666–675 (2018). PubMed PMC
Xu C. et al. Genotype-phenotype correlation study and mutational and hormonal analysis in a Chinese cohort with 21-hydroxylase deficiency. Mol. Genet. Genomic Med. 7, e671 (2019). PubMed PMC
Chang E. H. & Zabner J. Precision genomic medicine in cystic fibrosis. Clin. Transl. Sci. 8, 606–610 (2015). PubMed PMC
Grossmann S., Bauer S., Robinson P. N. & Vingron M. Improved detection of overrepresentation of Gene-Ontology annotations with parent child analysis. Bioinformatics 23, 3024–3031 (2007). PubMed
Nannenberg E. A. et al. Effect of ascertainment bias on estimates of patient mortality in inherited cardiac diseases. Circ. Genom. Precis. Med. 11, e001797 (2018). PubMed
Corvol H. et al. Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis. Nat. Commun. 6, 8382 (2015). PubMed PMC
Dareng E. O. et al. Polygenic risk modeling for prediction of epithelial ovarian cancer risk. Eur. J. Hum. Genet. 30, 349–362 (2022). PubMed PMC
Graefe A. S. L. et al. An ontology-based rare disease common data model harmonising international registries, FHIR, and Phenopackets. Sci. Data 12, 234 (2025). PubMed PMC
de Vries B. B. et al. Clinical studies on submicroscopic subtelomeric rearrangements: a checklist. J. Med. Genet. 38, 145–150 (2001). PubMed PMC
Bland J. M. & Altman D. G. The logrank test. BMJ 328, 1073 (2004). PubMed PMC
UniProt Consortium. UniProt: The universal protein knowledgebase in 2025. Nucleic Acids Res. (2024) doi:10.1093/nar/gkae1010. PubMed DOI PMC
Amberger J. S., Bocchini C. A., Scott A. F. & Hamosh A. OMIM.org: leveraging knowledge across phenotype-gene relationships. Nucleic Acids Res. 47, D1038–D1043 (2019). PubMed PMC