pH and Medium Polarity-Induced Self-Assembly of Fmoc-Tryptophan into Multiple Superstructures: An Experimental and Theoretical Investigations

. 2025 Mar 26 ; () : e2500036. [epub] 20250326

Status Publisher Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40135841

Grantová podpora
fileno. CRG/2023/001681 Anusandhan National Research Foundation, Core Research Grant
ID : 90254 Czech Academy of Sciences, Youth and Sports of the Czech Republic

Self-assembly of functionalized molecular building blocks is an effective and resource-saving bottom-up technique to generate multiple superstructures with various functionality and morphologies. The nature of the molecule and the factors controlling the overall self-assembly process are extremely vital in fundamental aspects of self-assembly, which deliver insights into the fabrication of multiple assemblies with specific functionality. The self-assembly of suitably functionalized amino acids leads to the formation of diverse structures with distinct properties, making them ideal bio-organic scaffolds for various applications. The present study reports, the pH and solvent polarity-induced self-assembly of 9-fluorenylmethoxycarbonyl (Fmoc)-Tryptophan into various self-assembled superstructures with morphological individualities, explore the plausible pathway of morphological transformation of Fmoc-Trp into multiple superstructures having a wide range of well-defined morphologies, including spheres, hollow spheres, nanoflowers, nanosheets, nanorods, and cube-like structures, as characterized through conventional microscopic techniques. Detailed UV-vis, fluorescence, powder X-ray diffraction analysis, and Fourier transform infrared analyses reveal significant insights into the intermolecular interactions, which trigger the overall self-assembly process. The computational studies, including full geometry optimization and molecular dynamics simulations, are conducted to investigate the aggregation properties of modified amino acids (Fmoc-Trp). These studies highlight the crucial role of π-π stacking and hydrogen bonding in tuning the overall self-assembly with morphological variation.

Zobrazit více v PubMed

Q. Ferreira, C. L. Delfino, J. Morgado, L. Alcácer, Materials 2019, 12, 382.

D. Liu, R. Aleisa, Z. Cai, Y. Li, Y. Yin, Matter 2021, 4, 927.

P. Xing, Y. Zhao, Adv. Mater. 2016, 28, 7304.

I. W. Fu, C. B. Markegard, H. D. Nguyen, Langmuir 2015, 31, 315.

Y. Cote, I. W. Fu, E. T. Dobson, J. E. Goldberger, H. D. Nguyen, J. K. Shen, J. Phys. Chem. C 2014, 118, 16272.

T. Wang, C. Ménard‐Moyon, A. Bianco, Chem. Soc. Rev. 2022, 51, 3535.

E. Gazit, Faseb J. 2002, 16, 77.

L. Adler‐Abramovich, L. Vaks, O. Carny, D. Trudler, A. Magno, A. Caflisch, D. Frenkel, E. Gazit, Nat. Chem. Biol. 2012, 8, 701.

S. Kuila, S. Dey, P. Singh, A. Shrivastava, J. Nanda, Chem. Commun. 2023, 59, 14509.

V. Singh, R. K. Rai, A. Arora, N. Sinha, A. K. Thakur, Sci. Rep. 2014, 4, 1.

W. P. Hsu, K. K. Koo, A. S. Myerson, Chem. Eng. Commun. 2002, 189, 1079.

K. P. Nartowski, S. M. Ramalhete, P. C. Martin, J. S. Foster, M. Heinrich, M. D. Eddleston, H. R. Green, G. M. Day, Y. Z. Khimyak, G. O. Lloyd, Cryst. Growth Des. 2017, 17, 4100.

V. Basavalingappa, T. Guterman, Y. Tang, S. Nir, J. Lei, P. Chakraborty, L. Schnaider, M. Reches, G. Wei, E. Gazit, Adv. Sci. 2019, 6, 1900218.

T. Das, M. Häring, D. Haldar, D. Díaz Díaz, Biomater. Sci. 2018, 6, 38.

J. Chen, N. Tao, S. Fang, Z. Chen, L. Liang, X. Sun, J. Li, Y. N. Liu, New J. Chem. 2018, 42, 9651.

K. Tao, E. Yoskovitz, L. Adler‐Abramovich, E. Gazit, RSC Adv. 2015, 5, 73914.

S. M. M. Reddy, G. Shanmugam, N. Duraipandy, M. S. Kiran, A. B. Mandal, Soft Matter 2015, 11, 8126.

T. Wang, C. Ménard‐Moyon, A. Bianco, ACS Appl. Mater. Interfaces 2024, 16, 10532.

S. Roy, A. Banerjee, Soft Matter 2011, 7, 5300.

S. Chibh, V. Katoch, A. Kour, F. Khanam, A. S. Yadav, M. Singh, G. C. Kundu, B. Prakash, J. J. Panda, Biomater. Sci. 2021, 9, 942.

S. Mukherjee, S. M. M. Reddy, G. Shanmugam, Soft Matter 2024, 20, 1834.

D. Fu, D. Liu, L. Zhang, L. Sun, Chinese Chem. Lett. 2020, 31, 3195.

N. Balasco, D. Altamura, P. L. Scognamiglio, T. Sibillano, C. Giannini, G. Morelli, L. Vitagliano, A. Accardo, C. Diaferia, Langmuir 2024, 40, 1470.

L. Zhao, Z. Liu, M. Ji, Int. J. Pept. Res. Ther. 2023, 29, 1.

S. Tashiro, M. Tomínaga, M. Kawano, B. Therrien, T. Ozeki, M. Fujita, J. Am. Chem. Soc. 2005, 127, 4546.

Y. Y. Xie, Y. W. Zhang, X. T. Qin, L. P. Liu, F. Wahid, C. Zhong, S. R. Jia, Colloids Surf. B Biointerfaces 2020, 193, 111099.

R. Bassan, M. Varshney, S. Roy, ChemistrySelect 2023, 8, 4.

S. Svenson, Curr. Opin. Colloid Interface Sci. 2004, 9, 201.

S. Svenson, J. Dispers. Sci. Technol. 2004, 25, 101.

N. Amdursky, E. Gazit, G. Rosenman, Adv. Mater. 2010, 22, 2311.

N. Amdursky, M. Molotskii, E. Gazit, G. Rosenman, N. Amdursky, M. Molotskii, E. Gazit, G. Rosenman, Appl. Phys. Lett. 2009, 94, 261907.

A. Arul, P. Rana, K. Das, I. Pan, D. Mandal, A. Stewart, B. Maity, S. Ghosh, P. Das, Nanoscale Adv. 2021, 3, 6176.

S. Murali, M. Reddy, G. Shanmugam, A. B. Mandal, Soft Matter 2015, 11, 4154.

W. Liyanage, W. W. Brennessel, B. L. Nilsson, Langmuir 2015, 31, 9933.

A. Saha, S. Bolisetty, S. Handschin, R. Mezzenga, Soft Matter 2013, 9, 10239.

D. M. Ryan, S. B. Anderson, F. T. Senguen, R. E. Youngman, B. L. Nilsson, Soft Matter 2010, 6, 475.

B. Koshti, H. W. A. Swanson, B. Wilson, V. Kshtriya, S. Naskar, H. Narode, K. H. A. Lau, T. Tuttle, N. Gour, Phys. Chem. Chem. Phys. 2023, 25, 11522.

P. Zhu, X. Yan, Y. Su, Y. Yang, J. Li, Chem. ‐ A Eur. J. 2010, 16, 3176.

P. Rana, M. Siva, R. Lo, P. Das, Mater. Adv. 2024, 5, 8208.

P. Rana, A. Jennifer G, S. Rao T, S. Mukhopadhyay, E. Varathan, P. Das, ACS Omega 2023, 8, 48855.

Y. Zou, K. Razmkhah, N. P. Chmel, I. W. Hamley, A. Rodger, RSC Adv. 2013, 3, 10854.

G. P. P. T. C. P. G. Catrinck, A. Dias, M. C. S. Aguiar, F. O. Silvério, P. H. Fidêncio, J. Braz, Chem. Soc. 2014, 25, 1194.

Y. Tej Varma, D. S. Agarwal, A. Sarmah, L. Joshi, R. Sakhuja, D. D. Pant, J. Mol. Struct. 2017, 1129, 248.

M. Más‐Montoya, R. A. J. Janssen, Adv. Funct. Mater. 2017, 27, 1605779.

J. Hong, S. Jeon, J. J. Kim, D. Devi, K. Chacon‐Madrid, W. Lee, S. M. Koo, J. Wildeman, M. Y. Sfeir, L. A. Peteanu, J. Wen, J. Ma, J. Phys. Chem. A 2014, 118, 10464.

L. Qin, K. Lv, Z. Shen, M. Liu, Soft Matter Nanotechnology, Wiley, New York 2015, pp. 21–94.

M. M. Pérez‐Madrigal, A. M. Gil, J. Casanovas, A. I. Jiménez, L. P. Macor, C. Alemán, Colloids Surf. B Biointerfaces 2022, 216, 112522.

E. Mayans, G. Ballano, J. Casanovas, A. Díaz, M. M. Pérez‐Madrigal, F. Estrany, J. Puiggalí, C. Cativiela, C. Alemán, Chem.–A Eur. J. 2015, 21, 16895.

A. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick, T. C. B. McLeish, A. N. Semenov, N. Boden, Proc. Natl. Acad. Sci. 2001, 98, 11857.

I. W. Hamley, Angew. Chemie Int. Ed. 2007, 46, 8128.

C. A. Mario Caruso, E. P. Emanuela Gatto, F. F. Gema Ballano, C. Toniolo, D. Zanuy, M. Venanzi, Soft Matter 2014, 10, 2508.

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.

A. D. Becke, J. Chem. Phys. 1993, 98, 5648.

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys 2010, 132, 154104.

E. R. Davidson, D. Feller, Chem. Rev. 1986, 86, 681.

L. Radom, P. R. Schleyer, J. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York 1986.

A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 1993, 5, 799.

J.‐D. Chai, M. Head‐Gordon, J. Chem. Phys. 2008, 128, 084106.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams‐Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, et al., Gaussian 16, Revision C.02, Gaussian, Inc., Wallingford, CT 2019.

G. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15.

G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758.

S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456.

A. R. M. Parrinello, Phys. Rev. Lett. 1980, 45, 1196.

M. Parrinello, A. Rahman, J. Appl. Phys. 1981, 52, 7182.

B. Badhani, R. Kakkar, Struct. Chem. 2017, 28, 1789.

R. Kakkar, M. Bhandari, Int. J. Quantum Chem. 2013, 113, 2060.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...