• This record comes from PubMed

Focal control of non-invasive deep brain stimulation using multipolar temporal interference

. 2025 Mar 27 ; 11 (1) : 7. [epub] 20250327

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Grant support
101088623 European Research Council - International
101088623 European Research Council - International
101088623 European Research Council - International
101088623 European Research Council - International
MOP-93796 CIHR - Canada
MOP-93796 CIHR - Canada
MOP-93796 CIHR - Canada
MOP-93796 CIHR - Canada

Links

PubMed 40140933
PubMed Central PMC11948895
DOI 10.1186/s42234-025-00169-6
PII: 10.1186/s42234-025-00169-6
Knihovny.cz E-resources

Temporal interference (TI) is a method of non-invasive brain stimulation using transcutaneous electrodes which allows the targeting and modulation of deeper brain structures, not normally associated with non-invasive simulation, while avoiding unwanted stimulation of shallower cortical structures. The properties of TI have been previously demonstrated, however, the problem of decoupling stimulation focality from stimulation intensity has not yet been well addressed. In this paper, we provide a possible novel solution, multipolar TI (mTI), which allows increased independent control over both the size of the stimulated region and the stimulation intensity. The mTI method uses multiple carrier frequencies to create multiple overlapping amplitude-modulated envelopes, rather than using one envelope as in standard TI. The study presents an explanation of the concept of mTI along with experimental data gathered from Rhesus macaques and mice. We improved the focality at depth in anesthetized mice and monkeys, and using the new focality in awake monkeys, evoked targeted activity at depth in the superior colliculus. The mTI method could be an interesting and potentially useful new tool alongside other forms of non-invasive brain stimulation. Teaser Multipolar Temporal Interference Stimulation can produce a more focal brain stimulation at depth compared to Temporal Interference.

See more in PubMed

Acerbo E, Jegou A, Luff C, et al. Focal non-invasive deep-brain stimulation with temporal interference for the suppression of epileptic biomarkers. Front Neurosci. 2022a;16:945221. 10.3389/fnins.2022.945221. PubMed PMC

Acerbo E, Jegou A, Luff C, et al. Focal non-invasive deep-brain stimulation with temporal interference for the suppression of epileptic biomarkers. Frontiers in Neuroscience. 2022;16. Accessed September 7, 2022. https://www.frontiersin.org/articles/10.3389/fnins.2022.945221 PubMed PMC

Acerbo, Missey et al. n.d., Non-invasive Temporal Interference Stimulation of the Hippocampus Suppresses Epileptic Biomarkers in Patients with Epilepsy: Biophysical Differences between Kilohertz and Amplitude Modulated Stimulation, preprint, https://www.medrxiv.org/content/10.1101/2024.12.05.24303799v1

Botzanowski B, Donahue MJ, Ejneby MS, et al. Noninvasive Stimulation of Peripheral Nerves using Temporally-Interfering Electrical Fields. Adv Healthcare Mater. 2022;11(17):2200075. 10.1002/adhm.202200075. PubMed PMC

Cao J, Grover P. STIMULUS: Noninvasive Dynamic Patterns of Neurostimulation Using Spatio-Temporal Interference. IEEE Trans Biomed Eng. 2020;67(3):726–37. 10.1109/TBME.2019.2919912. PubMed

Corneil BD, Olivier E, Munoz DP. Neck muscle responses to stimulation of monkey superior colliculus. I. Topography and manipulation of stimulation parameters. J Neurophysiol. 2002;88(4):1980–1999. 10.1152/jn.2002.88.4.1980 PubMed

Deng ZD, Lisanby SH, Peterchev AV. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 2013;6(1):1–13. 10.1016/j.brs.2012.02.005. PubMed PMC

Florian M, Rusina E, Acerbo E, et al. Orientation of Temporal Interference for Non-invasive Deep Brain Stimulation in Epilepsy. Front Neurosci. 2021;15:633988. 10.3389/fnins.2021.633988. PubMed PMC

Gandhi NJ, Katnani HA. Motor functions of the superior colliculus. Annu Rev Neurosci. 2011;34:205–31. 10.1146/annurev-neuro-061010-113728. PubMed PMC

George DD, Ojemann SG, Drees C, Thompson JA. Stimulation Mapping Using Stereoelectroencephalography: Current and Future Directions. Front Neurol. 2020;11:320. 10.3389/fneur.2020.00320. PubMed PMC

Grossman N, Bono D, Dedic N, et al. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields. Cell. 2017;169(6):1029-1041.e16. 10.1016/j.cell.2017.05.024. PubMed PMC

Goldberg ME, Wurtz RH. Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J Neurophysiol. 1972;35(4):542–559. 10.1152/jn.1972.35.4.542 PubMed

Huang Y, Parra LC. Can transcranial electric stimulation with multiple electrodes reach deep targets? Brain Stimul. 2019;12(1):30–40. 10.1016/j.brs.2018.09.010. PubMed PMC

Hwang J, Mitz AR, Murray EA. NIMH MonkeyLogic: Behavioral control and data acquisition in MATLAB. J Neurosci Methods. 2019;323:13–21. 10.1016/j.jneumeth.2019.05.002. PubMed PMC

IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues – ScienceOpen. Accessed August 20, 2024. https://www.scienceopen.com/document?vid=a95fbaa4-efd8-429a-a59e-5e208fea2e45

Klomjai W, Katz R, Lackmy-Vallée A. Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 2015;58(4):208–13. 10.1016/j.rehab.2015.05.005. PubMed

Lehmann SJ, Corneil BD. Transient Pupil Dilation after Subsaccadic Microstimulation of Primate Frontal Eye Fields. J Neurosci. 2016;36(13):3765–76. 10.1523/JNEUROSCI.4264-15.2016. PubMed PMC

Lee S, Park J, Choi DS, Lee C, Im CH. Multipair transcranial temporal interference stimulation for improved focalized stimulation of deep brain regions: A simulation study. Comput Biol Med. 2022;143:105337. 10.1016/j.compbiomed.2022.105337. PubMed

Lehmann SJ, Corneil BD. Completing the puzzle: Why studies in non-human primates are needed to better understand the effects of non-invasive brain stimulation. Neurosci Biobehav Rev. 2022;132:1074–85. 10.1016/j.neubiorev.2021.10.040. PubMed

Mikkonen M, Laakso I, Tanaka S, Hirata A. Cost of focality in TDCS: Interindividual variability in electric fields. Brain Stimul. 2020;13(1):117–24. 10.1016/j.brs.2019.09.017. PubMed

Missey et al., “Laser-driven wireless temporal interference using organic electrolytic photocapacitors for chronic deep brain stimulation of the mouse hippocampus”, Advanced Functional Materials, 2200691 (2022)

Missey F, Ejneby MS, Ngom I, et al. Obstructive sleep apnea improves with non-invasive hypoglossal nerve stimulation using temporal interference. Bioelectron Med. 2023;9(1):18. 10.1186/s42234-023-00120-7. PubMed PMC

Morel P. Gramm: grammar of graphics plotting in Matlab. Journal of Open Source Software. 2018;3(23):568. 10.21105/joss.00568.

Mueller JK, Grigsby EM, Prevosto V, et al. Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates. Nat Neurosci. 2014;17(8):1130–6. 10.1038/nn.3751. PubMed PMC

Munoz DP, Fecteau JH. Vying for dominance: dynamic interactions control visual fixation and saccadic initiation in the superior colliculus. Prog Brain Res. 2002;140:3–19. 10.1016/S0079-6123(02)40039-8. PubMed

Paxinos G, Huang XF, Toga A. The Rhesus Monkey Brain in Stereotaxic Coordinates. Faculty of Health and Behavioural Sciences - Papers (Archive). Published online January 1, 2000. https://ro.uow.edu.au/hbspapers/3613

Peel TR, Dash S, Lomber SG, Corneil BD. Frontal Eye Field Inactivation Diminishes Superior Colliculus Activity, But Delayed Saccadic Accumulation Governs Reaction Time Increases. J Neurosci. 2017;37(48):11715–30. 10.1523/JNEUROSCI.2664-17.2017. PubMed PMC

Rezvani S, Corneil Bd. Recruitment of a head-turning synergy by low-frequency activity in the primate superior colliculus. Journal of neurophysiology. 2008;100(1). 10.1152/jn.90223.2008 PubMed

Ritter P, Schirner M, McIntosh AR, Jirsa VK. The virtual brain integrates computational modeling and multimodal neuroimaging. Brain Connect. 2013;3(2):121–45. 10.1089/brain.2012.0120. PubMed PMC

Rossini PM, Burke D, Chen R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071–1107. 10.1016/j.clinph.2015.02.001 PubMed PMC

Roy AV, Camchong J, Lim KO. Principles and Applications of Transcranial Electrical Stimulation. In: Engineering in Medicine. Elsevier; 2019:319–334. 10.1016/B978-0-12-813068-1.00012-9

Romero MC, Davare M, Armendariz M, Janssen P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat Commun. 2019;10(1):2642. 10.1038/s41467-019-10638-7. PubMed PMC

Stanford TR, Freedman EG, Sparks DL. Site and parameters of microstimulation: evidence for independent effects on the properties of saccades evoked from the primate superior colliculus. J Neurophysiol. 1996;76(5):3360–81. 10.1152/jn.1996.76.5.3360. PubMed

Thompson KG, Hanes DP, Bichot NP, Schall JD. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol. 1996;76(6):4040–55. 10.1152/jn.1996.76.6.4040. PubMed

Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation. Annu Rev Biomed Eng. 2007;9:527–65. 10.1146/annurev.bioeng.9.061206.133100. PubMed

Wang CA, Munoz DP. Coordination of Pupil and Saccade Responses by the Superior Colliculus. J Cogn Neurosci. 2021;33(5):919–32. 10.1162/jocn_a_01688. PubMed

Wang CA, Boehnke SE, White BJ, Munoz DP. Microstimulation of the monkey superior colliculus induces pupil dilation without evoking saccades. J Neurosci. 2012;32(11):3629–36. 10.1523/JNEUROSCI.5512-11.2012. PubMed PMC

Wurtz RH, Goldberg ME. Activity of superior colliculus in behaving monkey. 3. Cells discharging before eye movements. J Neurophysiol. 1972;35(4):575–586. 10.1152/jn.1972.35.4.575 PubMed

Zhu X, Li Y, Zheng L, et al. Multi-Point Temporal Interference Stimulation by Using Each Electrode to Carry Different Frequency Currents. IEEE Access. 2019;7:168839–48. 10.1109/ACCESS.2019.2947857.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...