Design and Synthesis of 2-substituted [1,2,4]Triazolo[1,5-a]pyrimidines Tethered with Umbelliferone as Selective Carbonic Anhydrase IX and XII Inhibitors

. 2025 ; 25 (18) : 1429-1446.

Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40151081

Grantová podpora
FAR 2022-FAR.L-RR_044 University of Ferrara

OBJECTIVE: This study presents the design and synthesis of a new series of human carbonic anhydrase (hCA) inhibitors based on a 5-methyl/phenyl-7-(7'-oxycoumarin)-[1,2,4]triazolo[1,5-a]pyrimidine scaffold. METHODS: The chemical structures of novel coumarin-based triazolopyrimidines 3a-u were confirmed after using NMR and MS analyses. Their inhibitory profiles were evaluated against a panel of five hCA isoforms. Molecular docking simulations were conducted to elucidate the binding modes of compounds 3d and 3s with hCA IX and XII isoforms. Selected derivatives 3d and 3g were tested for their antiproliferative effects on the medulloblastoma HD-MB03 and the glioblastoma U87MG cell lines. Additionally, compounds 3d and 3g were evaluated alone or in combination with cisplatin (cis-Pt) for their ability to induce apoptosis in HD-MB03 cells. RESULTS: In vitro kinetic studies demonstrated that all 5-methyl triazolopyrimidine derivatives (3a-r) selectively inhibited the tumor-associated hCA isoforms (hCA IX and XII), with KI values ranging from 0.75 to 10.5 μM, while hCA I, II, IV isoforms were not significantly inhibited (KIs > 100 μM). Compound 3d emerged as the most potent and selective inhibitor, with KIs of 0.92 and 0.75 μM for hCA IX and XII, respectively. This derivative significantly suppressed cell proliferation in human brain tumor cell lines, particularly HD-MB03, when it was studied for its adjuvant effects in combination with cisplatin. CONCLUSION: In this study, we have identified compound 3d as a selective inhibitor of the isoforms hCA IX and XII, showing minimal inhibition over hCA I, II, and IV isoenzymes (selectivity indices > 100). Its moderate inhibitory effects on hCA IX and XII at submicromolar levels were paralleled by significant antiproliferative activity against HD-MB03 cells. These findings underscore the potential of compound 3d as a promising candidate for further therapeutic development, especially in combination with clinically used chemotherapeutic agents.

Zobrazit více v PubMed

Supuran C.T.; Structure and function of carbonic anhydrases. Biochem J 2016,473(14),2023-2032 PubMed DOI

Occhipinti R.; Boron W.F.; Role of carbonic anhydrases and inhibitors in acid-base physiology: Insights from mathematical modeling. Int J Mol Sci 2019,20(15),3841-3871 PubMed DOI

Jensen E.L.; Clement R.; Kosta A.; Maberly S.C.; Gontero B.; A new widespread subclass of carbonic anhydrase in marine phytoplankton. ISME J 2019,13(8),2094-2106 PubMed DOI

Aspatwar A.; Haapanen S.; Parkkila S.; An update on the metabolic roles of carbonic anhydrases in the model alga Chlamydomonas reinhardtii. Metabolites 2018,8(1),22 PubMed DOI

Mboge M.; Mahon B.; McKenna R.; Frost S.; Carbonic anhydrases: Role in pH control and cancer. Metabolites 2018,8(1),19 PubMed DOI

Supuran C.; Carbonic anhydrases and metabolism. Metabolites 2018,8(2),25 PubMed DOI

Supuran C.T.; Carbonic anhydrase versatility: From pH regulation to CO2 sensing and metabolism. Front Mol Biosci 2023,10 PubMed DOI

Aspatwar A.; Tolvanen M.E.E.; Barker H.; Syrjänen L.; Valanne S.; Purmonen S.; Waheed A.; Sly W.S.; Parkkila S.; Carbonic anhydrases in metazoan model organisms: Molecules, mechanisms, and physiology. Physiol Rev 2022,102(3),1327-1383 PubMed DOI

Akocak S.; Supuran C.T.; Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: A review. J Enzyme Inhib Med Chem 2019,34(1),1652-1659 PubMed DOI

Nocentini A.; Donald W.A.; Supuran C.T.; in: Carbonic Anhydrases 2019,151-186 DOI

Hassan I.M.; Shajee B.; Waheed A.; Ahmad F.; Sly W.S.; Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem 2013,21(6),1570-1582 PubMed DOI

Aggarwal M.; Boone C.D.; Kondeti B.; McKenna R.; Structural annotation of human carbonic anhydrases. J Enzyme Inhib Med Chem 2013,28(2),267-277 PubMed DOI

D’Ambrosio K.; De Simone G.; Supuran C.T.; Carbonic Anhydrases as Biocatalysts: From theory to Medical and Industrial Applications 2015,17-30 DOI

Supuran C.T.; Emerging role of carbonic anhydrase inhibitors. Clin Sci 2021,135(10),1233-1249 PubMed DOI

Zamanova S.; Shabana A.M.; Mondal U.K.; Ilies M.A.; Carbonic anhydrases as disease markers. Expert Opin Ther Pat 2019,29(7),509-533 PubMed DOI

Supuran C.T.; Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas. Expert Opin Ther Pat 2018,28(10),709-712 PubMed DOI

Ji M.J.; Hong J.H.; An overview of carbonic anhydrases and membrane channels of synoviocytes in inflamed joints. J Enzyme Inhib Med Chem 2019,34(1),1615-1622 PubMed DOI

Margheri F.; Ceruso M.; Carta F.; Laurenzana A.; Maggi L.; Lazzeri S.; Simonini G.; Annunziato F.; Del Rosso M.; Supuran C.T.; Cimaz R.; Overexpression of the transmembrane carbonic anhydrase isoforms IX and XII in the inflamed synovium J Enzyme Inhib Med Chem 2016,31(sup4),60-63 PubMed DOI

Buabeng E.R.; Henary M.; Developments of small molecules as inhibitors for carbonic anhydrase isoforms. Bioorg Med Chem 2021,39 PubMed DOI

Nocentini A.; Supuran C.T.; Capasso C.; An overview on the recently discovered iota-carbonic anhydrases. J Enzyme Inhib Med Chem 2021,36(1),1988-1995 PubMed DOI

Alterio V.; Di Fiore A.; D’Ambrosio K.; Supuran C.T.; De Simone G.; Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms? Chem Rev 2012,112(8),4421-4468 PubMed DOI

T. Supuran; C. Novel carbonic anhydrase inhibitors. Future Med Chem 2021,13(22),1935-1937 PubMed DOI

Thiry A.; Dogné J.M.; Supuran C.; Masereel B.; Carbonic anhydrase inhibitors as anticonvulsant agents. Curr Top Med Chem 2007,7(9),855-864 PubMed DOI

Mishra C.B.; Tiwari M.; Supuran C.T.; Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today? Med Res Rev 2020,40(6),2485-2565 PubMed DOI

Lionetto M.G.; Carbonic anhydrase and biomarker research: New insights. Int J Mol Sci 2023,24(11),9687 PubMed DOI

Benej M.; Pastorekova S.; Pastorek J.; Carbonic anhydrase IX: Regulation and role in cancer. Subcell Biochem 2014,75,199-219 PubMed DOI

Potter C.; Harris A.L.; Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target. Cell Cycle 2004,3(2),159-162 PubMed DOI

Becker H.M.; Carbonic anhydrase IX and acid transport in cancer. Br J Cancer 2020,122(2),157-167 PubMed DOI

Venkateswaran G.; Dedhar S.; Interplay of carbonic anhydrase IX with amino acid and acid/base transporters in the hypoxic tumor microenvironment. Front Cell Dev Biol 2020,8 PubMed DOI

Robertson N.; Potter C.; Harris A.L.; Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Res 2004,64(17),6160-6165 PubMed DOI

Kaluz S.; Kaluzová M.; Liao S.Y.; Lerman M.; Stanbridge E.J.; Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: A one transcription factor (HIF-1) show? Biochim Biophys Acta 2009,1795(2),162-172 PubMed

Ivanov S.; Liao S.Y.; Ivanova A.; Danilkovitch-Miagkova A.; Tarasova N.; Weirich G.; Merrill M.J.; Proescholdt M.A.; Oldfield E.H.; Lee J.; Zavada J.; Waheed A.; Sly W.; Lerman M.I.; Stanbridge E.J.; Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer. Am J Pathol 2001,158(3),905-919 PubMed DOI

Mucaj V.; Shay J.E.S.; Simon M.C.; Effects of hypoxia and HIFs on cancer metabolism. Int J Hematol 2012,95(5),464-470 PubMed DOI

Temiz E.; Koyuncu I.; Durgun M.; Caglayan M.; Gonel A.; Güler E.M.; Kocyigit A.; Supuran C.T.; Inhibition of carbonic anhydrase IX promotes apoptosis through intracellular pH level alterations in cervical cancer cells. Int J Mol Sci 2021,22(11),6098 PubMed DOI

Lee S.H.; McIntyre D.; Honess D.; Hulikova A.; Pacheco-Torres J.; Cerdán S.; Swietach P.; Harris A.L.; Griffiths J.R.; Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. Br J Cancer 2018,119(5),622-630 PubMed DOI

Pastorekova S.; Gillies R.J.; The role of carbonic anhydrase IX in cancer development: Links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev 2019,38(1-2),65-77 PubMed DOI

Parkkila S.; Parkkila A.K.; Saarnio J.; Kivelä J.; Karttunen T.J.; Kaunisto K.; Waheed A.; Sly W.S.; Türeci Ö.; Virtanen I.; Rajaniemi H.; Expression of the membrane-associated carbonic anhydrase isozyme XII in the human kidney and renal tumors. J Histochem Cytochem 2000,48(12),1601-1608 PubMed DOI

Ilie M.I.; Hofman V.; Ortholan C.; Ammadi R.E.; Bonnetaud C.; Havet K.; Venissac N.; Mouroux J.; Mazure N.M.; Pouysségur J.; Hofman P.; Overexpression of carbonic anhydrase XII in tissues from resectable non‐small cell lung cancers is a biomarker of good prognosis. Int J Cancer 2011,128(7),1614-1623 PubMed DOI

von Neubeck B.; Gondi G.; Riganti C.; Pan C.; Parra Damas A.; Scherb H.; Ertürk A.; Zeidler R.; An inhibitory antibody targeting carbonic anhydrase XII abrogates chemoresistance and significantly reduces lung metastases in an orthotopic breast cancer model in vivo. Int J Cancer 2018,143(8),2065-2075 PubMed DOI

Li Y.; Lei B.; Zou J.; Wang W.; Chen A.; Zhang J.; Fu Y.; Li Z.; High expression of carbonic anhydrase 12 (CA12) is associated with good prognosis in breast cancer. Neoplasma 2019,66(3),420-426 PubMed DOI

Hynninen P.; Vaskivuo L.; Saarnio J.; Haapasalo H.; Kivelä J.; Pastoreková S.; Pastorek J.; Waheed A.; Sly W.S.; Puistola U.; Parkkila S.; Expression of transmembrane carbonic anhydrases IX and XII in ovarian tumours. Histopathology 2006,49(6),594-602 PubMed DOI

Supuran C.T.; Carbonic anhydrase inhibitors: An update on experimental agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2021,30(12),1197-1208 PubMed DOI

Nerella S.G.; Thacker P.S.; Arifuddin M.; Supuran C.T.; Tumor associated carbonic anhydrase inhibitors: Rational approaches, design strategies, structure activity relationship and mechanistic insights. Eur J Med Chem Rep 2024,10 DOI

Supuran C.T.; Targeting carbonic anhydrases for the management of hypoxic metastatic tumors. Expert Opin Ther Pat 2023,33(11),701-720 PubMed DOI

Chen F.; Licarete E.; Wu X.; Petrusca D.; Maguire C.; Jacobsen M.; Colter A.; Sandusky G.E.; Czader M.; Capitano M.L.; Ropa J.P.; Boswell H.S.; Carta F.; Supuran C.T.; Parkin B.; Fishel M.L.; Konig H.; Pharmacological inhibition of Carbonic Anhydrase IX and XII to enhance targeting of acute myeloid leukaemia cells under hypoxic conditions. J Cell Mol Med 2021,25(24),11039-11052 PubMed DOI

Krasavin M.; Kalinin S.; Sharonova T.; Supuran C.T.; Inhibitory activity against carbonic anhydrase IX and XII as a candidate selection criterion in the development of new anticancer agents. J Enzyme Inhib Med Chem 2020,35(1),1555-1561 PubMed DOI

McDonald P.C.; Chafe S.C.; Supuran C.T.; Dedhar S.; Cancer therapeutic targeting of hypoxia induced carbonic anhydrase IX: From bench to bedside. Cancers 2022,14(14),3297 PubMed DOI

Supuran C.T.; Experimental carbonic anhydrase inhibitors for the treatment of hypoxic tumors. J Exp Pharmacol 2020,12,603-617 PubMed DOI

Pastorek J.; Pastorekova S.; Zatovicova M.; Cancer-associated carbonic anhydrases and their inhibition. Curr Pharm Des 2008,14(7),685-698 PubMed DOI

Singh S.; Lomelino C.; Mboge M.; Frost S.; McKenna R.; Cancer drug development of carbonic anhydrase inhibitors beyond the active site. Molecules 2018,23(5),1045 PubMed DOI

Supuran C.T.; Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 2018,27(12),963-970 PubMed DOI

Kciuk M.; Gielecińska A.; Mujwar S.; Mojzych M.; Marciniak B.; Drozda R.; Kontek R.; Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies. J Enzyme Inhib Med Chem 2022,37(1),1278-1298 PubMed DOI

Ialongo D.; Messore A.; Madia V.N.; Tudino V.; Nocentini A.; Gratteri P.; Giovannuzzi S.; Supuran C.T.; Nicolai A.; Scarpa S.; Taurone S.; Camarda M.; Artico M.; Papa V.; Saccoliti F.; Scipione L.; Di Santo R.; Costi R.; Pyrrolyl and indolyl α-γ-diketo acid XII. Pharmaceuticals 2023,16,188 PubMed DOI

Liu L.C.; Xu W.T.; Wu X.; Zhao P.; Lv Y.L.; Chen L.; Overexpression of carbonic anhydrase II and Ki-67 proteins in prognosis of gastrointestinal stromal tumors. World J Gastroenterol 2013,19(16),2473-2480 PubMed DOI

Viikilä P.; Kivelä A.J.; Mustonen H.; Koskensalo S.; Waheed A.; Sly W.S.; Doisy E.A.; Pastorek J.; Pastorekova S.; Parkkila S.; Haglund C.; Carbonic anhydrase enzymes II, VII, IX and XII in colorectal carcinomas. World J Gastroenterol 2016,22(36),8168-8177 PubMed DOI

Tachibana H.; Gi M.; Kato M.; Yamano S.; Fujioka M.; Kakehashi A.; Hirayama Y.; Koyama Y.; Tamada S.; Nakatani T.; Wanibuchi H.; Carbonic anhydrase 2 is a novel invasion‐associated factor in urinary bladder cancers. Cancer Sci 2017,108(3),331-337 PubMed DOI

Supuran C.T.; A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023,93 PubMed DOI

Vullo D.; Carta F.; In: Carbonic Anhydrases: Biochemistry and Pharmacology of an Evergreen Pharmaceutical Target 2019,187-222 DOI

Carta F.; Supuran C.T.; Scozzafava A.; Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med Chem 2014,6(10),1149-1165 PubMed DOI

Guedes G.B.; Karan A.; Mayer H.R.; Shields M.B.; Evaluation of adverse events in self-reported sulfa-allergic patients using topical carbonic anhydrase inhibitors. J Ocul Pharmacol Ther 2013,29(5),456-461 PubMed DOI

Kumar A.; Siwach K.; Supuran C.T.; Sharma P.K.; A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors. Bioorg Chem 2022,126 PubMed DOI

Tanpure R.P.; Ren B.; Peat T.S.; Bornaghi L.F.; Vullo D.; Supuran C.T.; Poulsen S.A.; Carbonic anhydrase inhibitors with dual-tail moieties to match the hydrophobic and hydrophilic halves of the carbonic anhydrase active site. J Med Chem 2015,58(3),1494-1501 PubMed DOI

Stams T.; Christianson D.W.; X-ray crystallographic studies of mammalian carbonic anhydrase isozymes. EXS 2000,90(90),159-174 PubMed DOI

Carta F.; Vullo D.; Osman S.M.; AlOthman Z.; Supuran C.T.; Synthesis and carbonic anhydrase inhibition of a series of SLC-0111 analogs. Bioorg Med Chem 2017,25(9),2569-2576 PubMed DOI

Pacchiano F.; Carta F.; McDonald P.C.; Lou Y.; Vullo D.; Scozzafava A.; Dedhar S.; Supuran C.T.; Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. J Med Chem 2011,54(6),1896-1902 PubMed DOI

Eloranta K.; Pihlajoki M.; Liljeström E.; Nousiainen R.; Soini T.; Lohi J.; Cairo S.; Wilson D.B.; Parkkila S.; Heikinheimo M.; SLC-0111, an inhibitor of carbonic anhydrase IX, attenuates hepatoblastoma cell viability and migration. Front Oncol 2023,13 PubMed DOI

Huo Z.; Bilang R.; Supuran C.T.; von der Weid N.; Bruder E.; Holland-Cunz S.; Martin I.; Muraro M.G.; Gros S.J.; Perfusion- based bioreactor culture and isothermal microcalorimetry for preclinical drug testing with the carbonic anhydrase inhibitor SLC-0111 in patient-derived neuroblastoma. Int J Mol Sci 2022,23(6),3128 PubMed DOI

Andreucci E.; Ruzzolini J.; Peppicelli S.; Bianchini F.; Laurenzana A.; Carta F.; Supuran C.T.; Calorini L.; The carbonic anhydrase IX inhibitor SLC-0111 sensitises cancer cells to conventional chemotherapy. J Enzyme Inhib Med Chem 2019,34(1),117-123 PubMed DOI

Lomelino C.; Supuran C.; McKenna R.; Non-classical inhibition of carbonic anhydrase. Int J Mol Sci 2016,17(7),1150 PubMed DOI

Fuentes-Aguilar A.; Merino-Montiel P.; Montiel-Smith S.; Meza-Reyes S.; Vega-Báez J.L.; Puerta A.; Fernandes M.X.; Padrón J.M.; Petreni A.; Nocentini A.; Supuran C.T.; López Ó.; Fernández-Bolaños J.G.; 2-Aminobenzoxazole-appended coumarins as potent and selective inhibitors of tumour-associated carbonic anhydrases. J Enzyme Inhib Med Chem 2022,37(1),168-177 PubMed DOI

Arrighi G.; Puerta A.; Petrini A.; Hicke F.J.; Nocentini A.; Fernandes M.X.; Padrón J.M.; Supuran C.T.; Fernández-Bolaños J.G.; López Ó.; Squaramide-tethered sulfonamides and coumarins: Synthesis, inhibition of tumor-associated CAs IX and XII and docking simulations. Int J Mol Sci 2022,23(14),7685 PubMed DOI

Supuran C.T.; Coumarin carbonic anhydrase inhibitors from natural sources. J Enzyme Inhib Med Chem 2020,35(1),1462-1470 PubMed DOI

Maresca A.; Temperini C.; Pochet L.; Masereel B.; Scozzafava A.; Supuran C.T.; Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J Med Chem 2010,53(1),335-344 PubMed DOI

Maresca A.; Temperini C.; Vu H.; Pham N.B.; Poulsen S.A.; Scozzafava A.; Quinn R.J.; Supuran C.T.; Non-zinc mediated inhibition of carbonic anhydrases: Coumarins are a new class of suicide inhibitors. J Am Chem Soc 2009,131(8),3057-3062 PubMed DOI

Eldehna W.M.; Taghour M.S.; Al-Warhi T.; Nocentini A.; Elbadawi M.M.; Mahdy H.A.; Abdelrahman M.A.; Alotaibi O.J.; Aljaeed N.; Elimam D.M.; Afarinkia K.; Abdel-Aziz H.A.; Supuran C.T.; Discovery of 2,4-thiazolidinedione-tethered coumarins as novel selective inhibitors for carbonic anhydrase IX and XII isoforms. J Enzyme Inhib Med Chem 2022,37(1),531-541 PubMed DOI

M Ghouse, S.; Bahatam K.; Angeli A.; Pawar G; Chinchilli K.K.; Yaddanapudi V.M.; Mohammed A.; Supuran C.T; Nanduri S.; Synthesis and biological evaluation of new 3-substituted coumarin derivatives as selective inhibitors of human carbonic anhydrase IX and XII. J Enzyme Inhib Med Chem 2023,38(1) PubMed DOI

Thacker P.S.; Angeli A.; Argulwar O.S.; Tiwari P.L.; Arifuddin M.; Supuran C.T.; Design, synthesis and biological evaluation of coumarin linked 1,2,4-oxadiazoles as selective carbonic anhydrase IX and XII inhibitors. Bioorg Chem 2020,98 PubMed DOI

De Luca L.; Mancuso F.; Ferro S.; Buemi M.R.; Angeli A.; Del Prete S.; Capasso C.; Supuran C.T.; Gitto R.; Inhibitory effects and structural insights for a novel series of coumarin-based compounds that selectively target human CA IX and CA XII carbonic anhydrases. Eur J Med Chem 2018,143,276-282 PubMed DOI

Al-Warhi T.; Sabt A.; Elkaeed E.B.; Eldehna W.M.; Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorg Chem 2020,103 PubMed DOI

Stefanachi A.; Leonetti F.; Pisani L.; Catto M.; Carotti A.; Coumarin: A natural, privileged and versatile scaffold for bioactive compounds. Molecules 2018,23(2),250 PubMed DOI

Oukoloff K.; Lucero B.; Francisco K.R.; Brunden K.R.; Ballatore C.; 1,2,4-Triazolo[1,5-a]pyrimidines in drug design. Eur J Med Chem 2019,165,332-346 PubMed DOI

Dai X.J.; Xue L.P.; Ji S.K.; Zhou Y.; Gao Y.; Zheng Y.C.; Liu H.M.; Liu H.M.; Triazole-fused pyrimidines in target-based anticancer drug discovery. Eur J Med Chem 2023,249 PubMed DOI

Maresta A.; Balducelli M.; Cantini L.; Casari A.; Chioin R.; Fabbri M.; Fontanelli A.; Monici Preti P.A.; Repetto S.; De Servi S.; Trapidil (triazolopyrimidine), a platelet-derived growth factor antagonist, reduces restenosis after percutaneous transluminal coronary angioplasty. Results of the randomized, double-blind STARC study. Studio Trapidil versus Aspirin nella Restenosi Coronarica. Circulation 1994,90(6),2710-2715 PubMed DOI

Said M.A.; Eldehna W.M.; Nocentini A.; Bonardi A.; Fahim S.H.; Bua S.; Soliman D.H.; Abdel-Aziz H.A.; Gratteri P.; Abou-Seri S.M.; Supuran C.T.; Synthesis, biological and molecular dynamics investigations with a series of triazolopyrimidine/triazole-based benzenesulfonamides as novel carbonic anhydrase inhibitors. Eur J Med Chem 2020,185 PubMed DOI

Romagnoli R.; De Ventura T.; Manfredini S.; Baldini E.; Supuran C.T.; Nocentini A.; Brancale A.; Varricchio C.; Bortolozzi R.; Manfreda L.; Viola G.; Design, synthesis, and biological investigation of selective human carbonic anhydrase II, IX, and XII inhibitors using 7-aryl/heteroaryl triazolopyrimidines bearing a sulfanilamide scaffold. J Enzyme Inhib Med Chem 2023,38(1) PubMed DOI

Oliva P.; Romagnoli R.; Cacciari B.; Manfredini S.; Padroni C.; Brancale A.; Ferla S.; Hamel E.; Corallo D.; Aveic S.; Milan N.; Mariotto E.; Viola G.; Bortolozzi R.; Synthesis and biological evaluation of highly active 7-anilino triazolopyrimidines as potent antimicrotubule agents. Pharmaceutics 2022,14(6),1191 PubMed DOI

Romagnoli R.; Oliva P.; Prencipe F.; Manfredini S.; Budassi F.; Brancale A.; Ferla S.; Hamel E.; Corallo D.; Aveic S.; Manfreda L.; Mariotto E.; Bortolozzi R.; Viola G.; Design, synthesis and biological investigation of 2-anilino triazolopyrimidines as tubulin polymerization inhibitors with anticancer activities. Pharmaceuticals 2022,15(8),1031 PubMed DOI

Tars K.; Vullo D.; Kazaks A.; Leitans J.; Lends A.; Grandane A.; Zalubovskis R.; Scozzafava A.; Supuran C.T.; Sulfocoumarins (1,2-benzoxathiine-2,2-dioxides): A class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases. J Med Chem 2013,56(1),293-300 PubMed DOI

Khalifah R.G.; The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 1971,246(8),2561-2573 PubMed DOI

Pistollato F.; Abbadi S.; Rampazzo E.; Persano L.; Della P.A.; Frasson C.; Sarto E.; Scienza R.; D’avella D.; Basso G.; Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma. Stem Cells 2010,28(5),851-862 PubMed DOI

Onnis V.; Special issue “Novel anti-proliferative agents”. Pharmaceuticals 2023,16(10),1437 PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...