In Spite of the Chemist's Belief: Metastable Hydrates of CsCl

. 2025 Mar 26 ; 5 (2) : 195-206. [epub] 20250206

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40160938

In this work, we focus on the low-temperature behavior of concentrated aqueous solutions of cesium chloride and discover two hydrates of CsCl. We employ four different methods, namely, (i) simple cooling at rates between 0.5 and 80 K s-1, (ii) simple cooling followed by pressurization, (iii) hyperquenching at 106 to 107 K s-1, and (iv) hyperquenching followed by pressurization. Depending on the method, different types of phase behaviors are observed, which encompass crystallization involving freeze-concentration, pressure-induced amorphization, full vitrification, and polyamorphic transformation. The CsCl hydrates discovered in our work cold-crystallize above 150 K upon heating after ultrafast vitrification (routes iii and iv) and show melting temperatures below the eutectic temperature of 251 K. We determine the composition of these hydrates to be CsCl·5H2O and CsCl·6H2O and find evidence for their existence in ESEM, calorimetry, and X-ray diffraction. The dominant and less metastable hydrate is the hexahydrate, where the pentahydrate appears as a minority species. We also reveal the birthplace for the CsCl hydrates, namely, the freeze-concentrated solution (FCS) formed upon cold-crystallization of the fully glassy solution (from iii and iv). The spongy FCS produced upon cooling of the liquid (from i and ii) is incapable of crystallizing CsCl-hydrates. By contrast, the FCS produced upon heating the glassy solution (from iii and iv) shows tiny, fine features that are capable of crystallizing CsCl-hydrates. Our findings contradict the current knowledge that alkali chlorides only have hydrates for the smaller cations Li+ and Na+, but not for the larger cations K+, Rb+, and Cs+ and pave the way for future determination of CsCl-hydrate crystal structures. The pathway to metastable crystalline materials outlined here might be more generally applicable and found in nature, e.g., in comets or on interstellar dust grains, when glassy aqueous solutions crystallize upon heating.

Zobrazit více v PubMed

Chen L.; Ren G.; Liu L.; Guo P.; Wang E.; Zhou L.; Zhu Z.; Zhang J.; Yang B.; Zhang W.; Li Y.; Zhang W.; Gao Y.; Zhao H.; Han J. Terahertz Signatures of Hydrate Formation in Alkali Halide Solutions. J. Phys. Chem. Lett. 2020, 11 (17), 7146–7152. 10.1021/acs.jpclett.0c02046. PubMed DOI

Elarby-Aouizerat A.; Jal J. F.; Chieux P.; Letoffé J. M.; Claudy P.; Dupuy J. Metastable Crystallization Products and Metastable Phase Diagram of the Glassy and Supercooled Aqueous Ionic Solutions of LiCl. J. Non. Cryst. Solids 1988, 104 (2–3), 203–210. 10.1016/0022-3093(88)90389-4. DOI

Cohen-Adad R.; Lorimer J. W.. Alkali Metal and Ammonium Chlorides in Water and Heavy Water (Binary Systems). In Solubility Data Series; Pergamon Press, 1991; Vol. 47, pp 375–412.

Dubois M.; Weisbrod A.; Shtuka A.; Martínez-Serrano R. The Low-Temperature (T< 120 °C) H2O-RbCl Phase Diagram Comparison with Other Water-Alkali Chloride Systems. Eur. J. Mineral. 1997, 9, 987–992. 10.1127/ejm/9/5/0987. DOI

Monnin C.; Dubois M. Thermodynamics of the CsCl-H2O System at Low Temperatures. Eur. J. Mineral. 1999, 11 (3), 477–482. 10.1127/ejm/11/3/0477. DOI

Gao D.; Li D.; Li W. Solubility of RbCl and CsCl in Pure Water at Subzero Temperatures, Heat Capacity of RbCl(Aq) and CsCl(Aq) at T = 298.15 K, and Thermodynamic Modeling of RbCl + H2O and CsCl + H2O Systems. J. Chem. Thermodyn. 2017, 104, 201–211. 10.1016/j.jct.2016.09.031. DOI

Chen N. J.; Morikawa J.; Kishi A.; Hashimoto T. Thermal Diffusivity of Eutectic of Alkali Chloride and Ice in the Freezing-Thawing Process by Temperature Wave Analysis. Thermochim. Acta 2005, 429 (1), 73–79. 10.1016/j.tca.2004.11.010. DOI

Dubois M.; Royer J.-J.; Weisbrod A.; Shtuka A. Reconstruction of Low-Temperature Binary Phase Diagrams Using a Constrained Least Squares Method: Application to the H2O-CsCl System. Eur. J. Mineral. 1993, 5 (6), 1145–1152. 10.1127/ejm/5/6/1145. DOI

Imrichová K.; Veselý L.; Gasser T. M.; Loerting T.; Neděla V.; Heger D. Vitrification and Increase of Basicity in between Ice Ih Crystals in Rapidly Frozen Dilute NaCl Aqueous Solutions. J. Chem. Phys. 2019, 151, 014503.10.1063/1.5100852. PubMed DOI

Vetráková L’.; Neděla V.; Runštuk J.; Heger D. The Morphology of Ice and Liquid Brine in an Environmental Scanning Electron Microscope: A Study of the Freezing Methods. Cryosph. 2019, 13 (9), 2385–2405. 10.5194/tc-13-2385-2019. DOI

Koop T.; Kapilashrami A.; Molina L. T.; Molina M. J. Phase Transitions of Sea-Salt/Water Mixtures at Low Temperatures: Implications for Ozone Chemistry in the Polar Marine Boundary Layer. J. Geophys. Res. 2000, 105 (D21), 26393–26402. 10.1029/2000JD900413. DOI

Hofer K.; Astl G.; Mayer E.; Johari G. P. Vitrified Dilute Aqueous Solutions. 4. Effects of Electrolytes and Polyhydric Alcohols on the Glass Transition Features of Hyperquenched Aqueous Solutions. J. Phys. Chem. 1991, 95 (26), 10777–10781. 10.1021/j100179a047. DOI

Loerting T.; Giovambattista N. Amorphous Ices: Experiments and Numerical Simulations. J. Phys.: Condens. Matter 2006, 18 (50), R919–R977. 10.1088/0953-8984/18/50/R01. DOI

Mishima O.; Calvert L. D.; Whalley E. Melting Ice” I at 77 K and 10 kbar: A New Method of Making Amorphous Solids. Nature 1984, 310 (5976), 393–395. 10.1038/310393a0. DOI

Suzuki Y.; Mishima O. Sudden Switchover between the Polyamorphic Phase Separation and the Glass-to-Liquid Transition in Glassy LiCl Aqueous Solutions. J. Chem. Phys. 2013, 138 (8), 084507.10.1063/1.4792498. PubMed DOI

Brüggeller P.; Mayer E. Complete Vitrification in Pure Liquid Water and Dilute Aqueous Solutions. Nature 1980, 288 (5791), 569–571. 10.1038/288569a0. DOI

Kohl I.; Bachmann L.; Hallbrucker A.; Mayer E.; Loerting T. Liquid-like Relaxation in Hyperquenched Water at ≤ 140 K. Phys. Chem. Chem. Phys. 2005, 7 (17), 3210–3220. 10.1039/b507651j. PubMed DOI

Bachler J.; Giebelmann J.; Amann-Winkel K.; Loerting T. Pressure-Annealed High-Density Amorphous Ice Made from Vitrified Water Droplets: A Systematic Calorimetry Study on Water’s Second Glass Transition. J. Chem. Phys. 2022, 157 (6), 064502.10.1063/5.0100571. PubMed DOI

Giebelmann J.; Bachler J.; Loerting T. Glass Polymorphism in Hyperquenched Aqueous LiCl Solutions. J. Phys. Chem. B 2023, 127 (15), 3463–3477. 10.1021/acs.jpcb.3c01030. PubMed DOI PMC

Ostwald W. Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Zeitschrift für Phys. Chemie 1897, 22U (1), 289–330. 10.1515/zpch-1897-2233. DOI

Loerting T.; Kohl I.; Schustereder W.; Winkel K.; Mayer E. High Density Amorphous Ice from Cubic Ice. ChemPhysChem 2006, 7 (6), 1203–1206. 10.1002/cphc.200600011. PubMed DOI

Tonauer C. M.; Köck E. M.; Gasser T. M.; Fuentes-Landete V.; Henn R.; Mayr S.; Kirchler C. G.; Huck C. W.; Loerting T. Near-Infrared Spectra of High-Density Crystalline H2O Ices II, IV, V, VI, IX, and XII. J. Phys. Chem. A 2021, 125 (4), 1062–1068. 10.1021/acs.jpca.0c09764. PubMed DOI PMC

Neděla V. Methods for Additive Hydration Allowing Observation of Fully Hydrated State of Wet Samples in Environmental SEM. Microsc. Res. Technol. 2007, 70 (2), 95–100. 10.1002/jemt.20390. PubMed DOI

Neděla V.; Tihlaříková E.; Runštuk J.; Hudec J. High-Efficiency Detector of Secondary and Backscattered Electrons for Low-Dose Imaging in the ESEM. Ultramicroscopy 2018, 184, 1–11. 10.1016/j.ultramic.2017.08.003. PubMed DOI

Tonauer C. M.; Yamashita K.; Del Rosso L.; Celli M.; Loerting T. Enthalpy Change from Pure Cubic Ice Ic to Hexagonal Ice Ih. J. Phys. Chem. Lett. 2023, 14 (21), 5055–5060. 10.1021/acs.jpclett.3c00408. PubMed DOI PMC

Dowell L. G.; Rinfret A. P. Low-Temperature Forms of Ice as Studied by X-Ray Diffraction. Nature 1960, 188 (4757), 1144–1148. 10.1038/1881144a0. DOI

Röttger K.; Endriss A.; Ihringer J.; Doyle S.; Kuhs W. F. Lattice Constants and Thermal Expansion of H2O and D2O Ice Ih between 10 and 265 K. Acta Crystallogr. Sect. B 1994, 50 (6), 644–648. 10.1107/S0108768194004933. PubMed DOI

Swanson H. E.; Fuyat R. K.. Standard X-Ray Diffraction Powder Patterns; Circular 539; National Bureau of Standards, 1953; vol II, pp 44–45.

Ganesan V.; Girirajan K. S. Lattice Parameter and Thermal Expansion of CsCl and CsBr by X-Ray Powder Diffraction. I. Thermal Expansion of CsCl from Room Temperature to 90 K. Pramana 1986, 27 (3), 469–474. 10.1007/BF02846872. DOI

Veselý L.; Závacká K.; Štusek R.; Olbert M.; Neděla V.; Shalaev E.; Heger D. Impact of Secondary Ice in a Frozen NaCl Freeze-Concentrated Solution on the Extent of Methylene Blue Aggregation. Int. J. Pharm. 2024, 650, 123691.10.1016/j.ijpharm.2023.123691. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...