UV Absorption Spectra of TAMRA and TAMRA Labeled Peptides: A Combined Density Functional Theory and Classical Molecular Dynamics Study
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
CA21169
European Cooperation in Science and Technology
e-INFRA CZ ID:90254
Ministerstvo Školství, Mládeže a Tělovýchovy
Project OPEN-28-18
Ministerstvo Školství, Mládeže a Tělovýchovy
22-27317K
Grantová Agentura České Republiky
UIP-2020-02-7669
Hrvatska Zaklada za Znanost
PLG/2024/016941
Infrastruktura PL-Grid
PubMed
40163389
PubMed Central
PMC11957245
DOI
10.1002/jcc.70096
Knihovny.cz E-zdroje
- Klíčová slova
- UV absorption spectra, fluorescent probes, molecular dynamics simulations, time‐dependent density functional theory,
- MeSH
- fluorescenční barviva chemie MeSH
- peptidy * chemie MeSH
- rhodaminy * chemie MeSH
- simulace molekulární dynamiky * MeSH
- spektrofotometrie ultrafialová MeSH
- teorie funkcionálu hustoty * MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 5-carboxytetramethylrhodamine succinimidyl ester MeSH Prohlížeč
- fluorescenční barviva MeSH
- peptidy * MeSH
- rhodaminy * MeSH
- voda MeSH
This study explores the structural and electronic factors affecting the absorption spectra of 5-carboxy-tetramethylrhodamine (TAMRA) in water, a widely used fluorophore in imaging and molecular labeling in biophysical studies. Through molecular dynamics (MD) simulations and density functional theory (DFT) calculations, we examine TAMRA UV absorption spectra together with TAMRA-labeled peptides (Arg9, Arg4, Lys9). We found that DFT calculations with different functionals underestimate TAMRA maximum UV absorption peak by ~100 nm, resulting in the maximum at ca. 450 nm instead of the experimental value of ca. 550 nm. However, incorporating MD simulation snapshots of TAMRA in water, the UV maximum peak shifts and is in close agreement with the experimental results due to the rotation of TAMRA N(CH3)2 groups, effectively captured in MD simulations. The method is used to estimate the UV absorption spectra of TAMRA-labeled peptides, matching experimental values.
Division for Organic Chemistry and Biochemistry Ruđer Bošković Institute Zagreb Croatia
Faculty of Chemistry Jagiellonian University Krakow Poland
J Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Waggoner A. S. and Stryer L., “Fluorescent Probes of Biological Membranes,” Proceedings of the National Academy of Sciences of the United States of America 67, no. 2 (1970): 579–589. PubMed PMC
Wu D., Sedgwick A. C., Gunnlaugsson T., Akkaya E. U., Yoon J., and James T. D., “Fluorescent Chemosensors: The Past, Present and Future,” Chemical Society Reviews 46, no. 23 (2017): 7105–7123. PubMed
Johnson I. D., Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies (Life Technologies Corporation, 2010).
Cwiklik L., Aquino A. J. A., Vazdar M., et al., “Absorption and Fluorescence of PRODAN in Phospholipid Bilayers: A Combined Quantum Mechanics and Classical Molecular Dynamics Study,” Journal of Physical Chemistry A 115, no. 41 (2011): 11428–11437. PubMed
Rybczynski P. and Kaczmarek‐Kȩdziera A., “BODIPY Dimers: Structure, Interaction, and Absorption Spectrum,” Structural Chemistry 32, no. 3 (2021): 953–965.
Obermaier C., Griebel A., and Westermeier R., “Principles of Protein Labeling Techniques,” Methods in Molecular Biology 2261 (2021): 549–562. PubMed
Goncalves M. S., “Fluorescent Labeling of Biomolecules With Organic Probes,” Chemical Reviews 109, no. 1 (2009): 190–212. PubMed
Renciuk D., Zhou J., Beaurepaire L., Guedin A., Bourdoncle A., and Mergny J. L., “A FRET‐Based Screening Assay for Nucleic Acid Ligands,” Methods 57, no. 1 (2012): 122–128. PubMed
Kawai K., Matsutani E., Maruyama A., and Majima T., “Probing the Charge‐Transfer Dynamics in DNA at the Single‐Molecule Level,” Journal of the American Chemical Society 133, no. 39 (2011): 15568–15577. PubMed
Marenich A. V., Cramer C. J., and Truhlar D. G., “Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions,” Journal of Physical Chemistry B 113, no. 18 (2009): 6378–6396. PubMed
Tomasi J., Mennucci B., and Cammi R., “Quantum Mechanical Continuum Solvation Models,” Chemical Reviews 105, no. 8 (2005): 2999–3094. PubMed
Frisch M. J., Trucks G. W., Schlegel H. B., et al., Gaussian 16, Revision B.01 (Gaussian, Inc, 2016).
Becke A. D., “Density‐Functional Exchange‐Energy Approximation With Correct Asymptotic Behavior,” Physical Review A 38, no. 6 (1988): 3098–3100. PubMed
Perdew J. P., “Density‐Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas,” Physical Review B: Condensed Matter 33, no. 12 (1986): 8822–8824. PubMed
Lee C., Yang W., and Parr R. G., “Development of the Colle‐Salvetti Correlation‐Energy Formula Into a Functional of the Electron Density,” Physical Review B 37, no. 2 (1988): 785–789. PubMed
Tao J., Perdew J. P., Staroverov V. N., and Scuseria G. E., “Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids,” Physical Review Letters 91, no. 14 (2003): 146401. PubMed
Zhao Y. and Truhlar D. G., “The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06‐Class Functionals and 12 Other Functionals,” Theoretical Chemistry Accounts 120, no. 1–3 (2008): 215–241.
Staroverov V. N., Scuseria G. E., Tao J., and Perdew J. P., “Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen‐Bonded Complexes,” Journal of Chemical Physics 119, no. 23 (2003): 12129–12137. PubMed
Adamo C. and Barone V., “Toward Reliable Density Functional Methods Without Adjustable Parameters: The PBE0 Model,” Journal of Chemical Physics 110, no. 13 (1999): 6158–6170.
Becke A. D., “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics 98, no. 7 (1993): 5648–5652.
Yanai T., Tew D. P., and Handy N. C., “A New Hybrid Exchange–Correlation Functional Using the Coulomb‐Attenuating Method (CAM‐B3LYP),” Chemical Physics Letters 393, no. 1–3 (2004): 51–57.
Chai J. D. and Head‐Gordon M., “Long‐Range Corrected Hybrid Density Functionals With Damped Atom–Atom Dispersion Corrections,” Physical Chemistry Chemical Physics 10, no. 44 (2008): 6615–6620. PubMed
Grimme S., Ehrlich S., and Goerigk L., “Effect of the Damping Function in Dispersion Corrected Density Functional Theory,” Journal of Computational Chemistry 32, no. 7 (2011): 1456–1465. PubMed
Grimme S., Antony J., Ehrlich S., and Krieg H., “A Consistent and Accurate ab Initio parametrization of Density Functional Dispersion Correction (DFT‐D) for the 94 Elements H‐Pu,” Journal of Chemical Physics 132, no. 15 (2010): 154104. PubMed
Krishnan R., Binkley J. S., Seeger R., and Pople J. A., “Self‐Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions,” Journal of Chemical Physics 72, no. 1 (1980): 650–654.
Frisch M. J., Pople J. A., and Binkley J. S., “Self‐Consistent Molecular Orbital Methods 25. Supplementary Functions for Gaussian Basis Sets,” Journal of Chemical Physics 80, no. 7 (1984): 3265–3269.
Dunning T. H., “Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen,” Journal of Chemical Physics 90, no. 2 (1989): 1007–1023.
Wilson A. K., Woon D. E., Peterson K. A., and Dunning T. H., “Gaussian Basis Sets for Use in Correlated Molecular Calculations. IX. The Atoms Gallium Through Krypton,” Journal of Chemical Physics 110, no. 16 (1999): 7667–7676.
Kendall R. A., Dunning T. H., and Harrison R. J., “Electron Affinities of the First‐Row Atoms Revisited. Systematic Basis Sets and Wave Functions,” Journal of Chemical Physics 96, no. 9 (1992): 6796–6806.
Cossi M. and Barone V., “Time‐Dependent Density Functional Theory for Molecules in Liquid Solutions,” Journal of Chemical Physics 115, no. 10 (2001): 4708–4717.
Møller C. and Plesset M. S., “Note on an Approximation Treatment for Many‐Electron Systems,” Physical Review 46, no. 7 (1934): 618–622.
Weigend F., Köhn A., and Hättig C., “Efficient Use of the Correlation Consistent Basis Sets in Resolution of the Identity MP2 Calculations,” Journal of Chemical Physics 116, no. 8 (2002): 3175–3183.
Neese F., “The ORCA Program System,” WIREs Computational Molecular Science 2, no. 1 (2012): 73–78.
Vanommeslaeghe K., Hatcher E., Acharya C., et al., “CHARMM General Force Field: A Force Field for Drug‐Like Molecules Compatible With the CHARMM All‐Atom Additive Biological Force Fields,” Journal of Computational Chemistry 31, no. 4 (2010): 671–690. PubMed PMC
Macchi S., Nifosi R., Signore G., et al., “Self‐Aggregation Propensity of the Tat Peptide Revealed by UV‐Vis, NMR and MD Analyses,” Physical Chemistry Chemical Physics 19, no. 35 (2017): 23910–23914. PubMed
Jan Akhunzada M., Chandramouli B., Bhattacharjee N., Macchi S., Cardarelli F., and Brancato G., “The Role of Tat Peptide Self‐Aggregation in Membrane Pore Stabilization: Insights From a Computational Study,” Physical Chemistry Chemical Physics 19, no. 40 (2017): 27603–27610. PubMed
Huang J., Rauscher S., Nawrocki G., et al., “CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins,” Nature Methods 14, no. 1 (2017): 71–73. PubMed PMC
Jorgensen W., Chandrasekhar J., Madura J., Impey R., and Klein M., “Comparison of Simple Potential Functions for Simulating Liquid Water,” Journal of Chemical Physics 79 (1983): 926–935.
Abraham M. J., Murtola T., Schulz R., et al., “GROMACS: High Performance Molecular Simulations Through Multi‐Level Parallelism From Laptops to Supercomputers,” SoftwareX 1‐2 (2015): 19–25.
Bussi G., Donadio D., and Parrinello M., “Canonical Sampling Through Velocity Rescaling,” Journal of Chemical Physics 126, no. 1 (2007): 014101. PubMed
Ufimtsev I. S. and Martinez T. J., “Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics,” Journal of Chemical Theory and Computation 5, no. 10 (2009): 2619–2628. PubMed
Titov A. V., Ufimtsev I. S., Luehr N., and Martinez T. J., “Generating Efficient Quantum Chemistry Codes for Novel Architectures,” Journal of Chemical Theory and Computation 9, no. 1 (2013): 213–221. PubMed
OriginLab Corporation , OriginPro, Version 2024b (OriginLab Corporation, 2024).
Madani F., Lindberg S., Langel Ü., Futaki S., and Gräslund A., “Mechanisms of Cellular Uptake of Cell‐Penetrating Peptides,” Journal of Biophysics 2011, no. 1 (2011): 414729. PubMed PMC
Thakur G. C. N., Uday A., and Jurkiewicz P., “FRET‐GP—A Local Measure of the Impact of Transmembrane Peptide on Lipids,” Langmuir 39, no. 50 (2023): 18390–18402. PubMed