Comparative Analysis of Pasture Composition: DNA Metabarcoding Versus Quadrat-Based Botanical Surveys in Experimental Grassland Plots
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40170833
PubMed Central
PMC11950155
DOI
10.1002/ece3.71195
PII: ECE371195
Knihovny.cz E-zdroje
- Klíčová slova
- DNA metabarcoding, botanical survey, ecological monitoring, grassland biodiversity, species composition,
- Publikační typ
- časopisecké články MeSH
DNA metabarcoding provides a scalable alternative to traditional botanical surveys, which are often time-consuming and reliant on taxonomic expertise. Here, we compare DNA metabarcoding with quadrat-based botanical surveys to assess plant species composition in experimental grassland plots under four defoliation regimes (continuous grazing, rotational grazing, frequent cutting and conservation cutting). Botanical surveys identified 16 taxa, while metabarcoding detected 25 taxa, including the dominant species Holcus lanatus and Lolium perenne. Despite detecting more taxa, there were some discrepancies in identification, with the sequence data only able to resolve some taxa at the genus level (e.g., Agrostis spp. instead of Agrostis capillaris) and potential species misidentifications (e.g., Cardaminopsis helleri vs. Cardamine flexuosa). However, both methods provided comparable results and revealed statistically significant differences in species composition between treatments, with higher diversity in cut versus grazed plots. The semi-quantitative nature of metabarcoding limits its capacity to accurately reflect species abundance, posing challenges for ecological interpretations where precise quantification is required. However, it provides a broader view of biodiversity and can complement traditional methods, offering new opportunities for efficient biodiversity monitoring. The findings support the integration of DNA metabarcoding into biodiversity assessments, particularly when used alongside traditional techniques. Further refinement of bioinformatics tools and reference databases will enhance their accuracy and reliability, enabling more effective monitoring of grassland biodiversity and sustainable management practices. This study highlights DNA metabarcoding as a valuable tool for understanding plant community responses to management interventions.
Department of Biology and Ecology Technical University Liberec Czechia
National Botanic Garden of Wales Llanarthne Carmarthenshire UK
Pwllpeiran Upland Research Centre Aberystwyth University Aberystwyth UK
Zobrazit více v PubMed
Alberdi, A. , Aizpurua O., Bohmann K., et al. 2019. “Promises and Pitfalls of Using High‐Throughput Sequencing for Diet Analysis.” Molecular Ecology Resources 19, no. 2: 327–348. 10.1111/1755-0998.12960. PubMed DOI
Ariza, M. , Fouks B., Mauvisseau Q., Halvorsen R., Alsos I. G., and de Boer H. J.. 2023. “Plant Biodiversity Assessment Through Soil eDNA Reflects Temporal and Local Diversity.” Methods in Ecology and Evolution 14, no. 2: 415–430.
Banerjee, P. , Stewart K. A., Dey G., et al. 2022. “Environmental DNA Analysis as an Emerging Non‐Destructive Method for Plant Biodiversity Monitoring: A Review.” AoB Plants 14: 1–14. 10.1093/aobpla/plac031. PubMed DOI PMC
Baur, B. , Cremene C., Groza G., Schileyko A. A., Baur A., and Erhardt A.. 2007. “Intensified Grazing Affects Endemic Plant and Gastropod Diversity in Alpine Grasslands of the Southern Carpathian Mountains (Romania).” Biologia 62, no. 4: 438–445. 10.2478/s11756-007-0086-4. DOI
Bell, K. L. , Loeffler V. M., and Brosi B. J.. 2017. “An rbcL Reference Library to Aid in the Identification of Plant Species Mixtures by DNA Metabarcoding.” Applications in Plant Sciences 5, no. 3: 1600110. 10.3732/apps.1600110. PubMed DOI PMC
Bolger, A. M. , Lohse M., and Usadel B.. 2014. “Trimmomatic: A Flexible Trimmer for Illumina Sequence Data.” Bioinformatics 30, no. 15: 2114–2120. 10.1093/bioinformatics/btu170. PubMed DOI PMC
Boval, M. , and Dixon R. M.. 2012. “The Importance of Grasslands for Animal Production and Other Functions: A Review on Management and Methodological Progress in the Tropics.” Animal 6, no. 5: 748–762. 10.1017/S1751731112000304. PubMed DOI
Braukmann, T. W. A. , Braukmann T. W., Kuzmina M. L., Sills J., Zakharov E. V., and Hebert P. D.. 2017. “Testing the Efficacy of DNA Barcodes for Identifying the Vascular Plants of Canada.” PLoS One 12, no. 1: 1–19. 10.1371/journal.pone.0169515, 28072819. PubMed DOI PMC
Carrasco‐Puga, G. , Díaz F. P., Soto D. C., et al. 2021. “Revealing Hidden Plant Diversity in Arid Environments.” Ecography 44, no. 1: 98–111.
Chen, I. P. , Tang C. Y., Chiou C. Y., et al. 2009. “Comparative Analyses of Coding and Noncoding DNA Regions Indicate That Acropora (Anthozoa: Scleractina) Possesses a Similar Evolutionary Tempo of Nuclear vs. Mitochondrial Genomes as in Plants.” Marine Biotechnology 11: 141–152. PubMed
Chen, S. , Yao H., Han J., et al. 2010. “Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species.” PLoS One 5, no. 1: e8613. PubMed PMC
De Mattia, F. , Gentili R., Bruni I., et al. 2012. “A Multi‐Marker DNA Barcoding Approach to Save Time and Resources in Vegetation Surveys: Integrated Identification System for Plants.” Botanical Journal of the Linnean Society 169, no. 3: 518–529. 10.1111/j.1095-8339.2012.01251.x. DOI
De Vere, N. , Jones L. E., Gilmore T., et al. 2017. “Using DNA Metabarcoding to Investigate Honey Bee Foraging Reveals Limited Flower Use Despite High Floral Availability.” Nature Publishing Group 7: 42838. 10.1038/srep42838. PubMed DOI PMC
De Vere, N. , Rich T. C. G., Trinder S. A., and Long C.. 2015. “DNA Barcoding for Plants.” In Plant Genotyping: Methods and Protocols, vol. 1245, 91–99. Springer. 10.1007/978-1-4939-1966-6. PubMed DOI
De Mattia, F. , Gentili R., Bruni I., et al. 2012. “A Multi‐Marker DNA Barcoding Approach to Save Time and Resources in Vegetation Surveys.” Botanical Journal of the Linnean Society 169, no. 3: 518–529.
De Vere, N. , Rich T. C. G., Ford C. R., et al. 2012. “DNA Barcoding the Native Flowering Plants and Conifers of Wales.” PLoS One 7, no. 6: 1–12. 10.1371/journal.pone.0037945. PubMed DOI PMC
Deiner, K. , Bik H. M., Mächler E., et al. 2017. “Environmental DNA Metabarcoding: Transforming How We Survey Animal and Plant Communities.” Molecular Ecology 26, no. 21: 5872–5895. 10.1111/mec.14350. PubMed DOI
Duley, E. , Iribar A., Bisson C., Chave J., and Donald J.. 2023. “Soil Environmental DNA Metabarcoding Can Quantify Local Plant Diversity for Biomonitoring Across Varied Environments.” Restoration Ecology 31, no. 4: e13831.
Fahner, N. A. , Shokralla S., Baird D. J., and Hajibabaei M.. 2016. “Large‐Scale Monitoring of Plants Through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers.” PLoS One 11, no. 6: e0157505. 10.1371/journal.pone.0157505. PubMed DOI PMC
Fraser, M. D. , Vallin H. E., and Roberts B. P.. 2022. “Animal Board Invited Review: Grassland‐Based Livestock Farming and Biodiversity.” Animal 16, no. 12: 100671. 10.1016/j.animal.2022.100671. PubMed DOI PMC
Garnick, S. , Barboza P. S., and Walker J. W.. 2018. “Assessment of Animal‐Based Methods Used for Estimating and Monitoring Rangeland Herbivore Diet Composition.” Rangeland Ecology & Management 71, no. 4: 449–457.
Guo, M. , Yuan C., Tao L., Cai Y., and Zhang W.. 2022. “Life Barcoded by DNA Barcodes.” Conservation Genetics Resources 14, no. 4: 351–365. PubMed PMC
Hakimzadeh, A. , Abdala Asbun A., Albanese D., et al. 2024. “A Pile of Pipelines: An Overview of the Bioinformatics Software for Metabarcoding Data Analyses.” Molecular Ecology Resources 24, no. 5: 1–17. 10.1111/1755-0998.13847. PubMed DOI PMC
Harrison, J. G. , John Calder W., Shuman B., and Alex Buerkle C.. 2021. “The Quest for Absolute Abundance: The Use of Internal Standards for DNA‐Based Community Ecology.” Molecular Ecology Resources 21, no. 1: 30–43. 10.1111/1755-0998.13247. PubMed DOI
Hassan, S. , Sabreena P. P., Ganai B. A., Almalki W. H., Gafur A., and Sayyed R. Z.. 2022. “Environmental DNA Metabarcoding: A Novel Contrivance for Documenting Terrestrial Biodiversity.” Biology 11, no. 9: 1297. PubMed PMC
Hawkins, J. , de Vere N., Griffith A., et al. 2015. “Using DNA Metabarcoding to Identify the Floral Composition of Honey: A New Tool for Investigating Honey Bee Foraging Preferences.” PLoS One 10, no. 8: e0134735. 10.1371/journal.pone.0134735. PubMed DOI PMC
Hollingsworth, P. M. , Forrest L. L., Spouge J. L., et al. 2009. “A DNA Barcode for Land Plants.” Proceedings of the National Academy of Sciences 106, no. 31: 12794–12797. 10.1073/pnas.0905845106. PubMed DOI PMC
Hollingsworth, P. M. , Graham S. W., and Little D. P.. 2011. “Choosing and Using a Plant DNA Barcode.” PLoS One 6, no. 5: e19254. 10.1371/journal.pone.0019254. PubMed DOI PMC
Johnson, M. D. , Freeland J. R., Parducci L., et al. 2023. “Environmental DNA as an Emerging Tool in Botanical Research.” American Journal of Botany 110, no. 2: e16120. 10.1002/ajb2.16120. PubMed DOI
Jones, L. , Twyford A. D., Ford C. R., et al. 2021. “Barcode UK: A Complete DNA Barcoding Resource for the Flowering Plants and Conifers of the United Kingdom.” Molecular Ecology Resources 21, no. 6: 2050–2062. 10.1111/1755-0998.13388. PubMed DOI
Kestel, J. H. , Field D. L., Bateman P. W., et al. 2022. “Applications of Environmental DNA (eDNA) in Agricultural Systems: Current Uses, Limitations and Future Prospects.” Science of the Total Environment 847: 157556. PubMed
Kress, W. J. 2017. “Plant DNA Barcodes: Applications Today and in the Future.” Journal of Systematics and Evolution 55: 291–307. 10.1111/jse.12254. DOI
Kress, W. J. , and Erickson D. L.. 2007. “A Two‐Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non‐Coding trnH‐psbA Spacer Region.” PLoS One 2, no. 6: e508. 10.1371/journal.pone.0000508. PubMed DOI PMC
Kuzmina, M. L. , Braukmann T. W. A., Fazekas A. J., et al. 2017. “Using Herbarium‐Derived DNAs to Assemble a Large‐Scale DNA Barcode Library for the Vascular Plants of Canada.” Applications in Plant Sciences 5, no. 12: 1700079. 10.3732/apps.1700079. PubMed DOI PMC
Leontidou, K. , Vernesi C., De Groeve J., Cristofolini F., Vokou D., and Cristofori A.. 2018. “DNA Metabarcoding of Airborne Pollen: New Protocols for Improved Taxonomic Identification of Environmental Samples.” Aerobiologia 34: 63–74.
Leontidou, K. , Vokou D., Sandionigi A., et al. 2021. “Plant Biodiversity Assessment Through Pollen DNA Metabarcoding in Natura 2000 Habitats (Italian Alps).” Scientific Reports 11, no. 1: 18226. 10.1038/s41598-021-97619-3. PubMed DOI PMC
Lowe, A. , Jones L., Witter L., Creer S., and de Vere N.. 2022. “Using DNA Metabarcoding to Identify Floral Visitation by Pollinators.” Diversity 14, no. 4: 236.
Luo, M. , Ji Y., Warton D., and Yu D. W.. 2023. “Extracting Abundance Information From DNA‐Based Data.” Molecular Ecology Resources 23, no. 1: 174–189. 10.1111/1755-0998.13703, 35986714. PubMed DOI PMC
Magoč, T. , and Salzberg S. L.. 2011. “FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies.” Bioinformatics 27, no. 21: 2957–2963. 10.1093/bioinformatics/btr507. PubMed DOI PMC
Mallott, E. K. , Garber P. A., and Malhi R. S.. 2018. “Trnl Outperforms rbcL as a DNA Metabarcoding Marker When Compared With the Observed Plant Component of the Diet of Wild White‐Faced Capuchins (Cebus capucinus, Primates).” PLoS One 13, no. 6: e0199556. 10.1371/journal.pone.0199556. PubMed DOI PMC
Moorhouse‐Gann, R. J. , Dunn J. C., de Vere N., et al. 2018. “New Universal ITS2 Primers for High‐Resolution Herbivory Analyses Using DNA Metabarcoding in Both Tropical and Temperate Zones.” Scientific Reports 8, no. 1: 1–15. 10.1038/s41598-018-26648-2. PubMed DOI PMC
Pavlů, L. , Pavlů V. V., and Fraser M. D.. 2021. “What Is the Effect of 19 Years of Restoration Managements on Soil and Vegetation on Formerly Improved Upland Grassland?” Science of the Total Environment 755, no. Pt 2: 142469. 10.1016/j.scitotenv.2020.142469, 33065510. PubMed DOI
Pepeta, B. N. , Moyo M., Adejoro F. A., Hassen A., and Nsahlai I. V.. 2022. “Techniques Used to Determine Botanical Composition, Intake, and Digestibility of Forages by Ruminants.” Agronomy 12, no. 10: 1–18. 10.3390/agronomy12102456. DOI
Poland, J. , and Clement E. J.. 2009. The Vegetative Key to the British Flora: A New Approach to Plant Identification. Botanical Society of the British Isles.
Pornon, A. , Escaravage N., Burrus M., et al. 2016. “Using Metabarcoding to Reveal and Quantify Plant–Pollinator Interactions.” Scientific Reports 6, no. 1: 27282. PubMed PMC
Rognes, T. , Flouri T., Nichols B., Quince C., and Mahé F.. 2016. “VSEARCH: A Versatile Open Source Tool for Metagenomics.” PeerJ 4: e2584. 10.7717/peerj.2584. PubMed DOI PMC
Ruppert, K. M. , Kline R. J., and Rahman M. S.. 2019. “Past, Present, and Future Perspectives of Environmental DNA (eDNA) Metabarcoding: A Systematic Review in Methods, Monitoring, and Applications of Global eDNA.” Global Ecology and Conservation 17: e00547. 10.1016/j.gecco.2019.e00547. DOI
Taberlet, P. , Bonin A., Zinger L., et al. 2018. Environmental DNA: For Biodiversity Research and Monitoring. First Edit ed. Oxford University Press. 10.1093/oso/9780198767220.001.0001. DOI
Taberlet, P. , Coissac E., Pompanon F., Brochmann C., and Willerslev E.. 2012. “Towards Next‐Generation Biodiversity Assessment Using DNA Metabarcoding.” Molecular Ecology 21, no. 8: 2045–2050. PubMed
Uchii, K. , Doi H., Okahashi T., et al. 2019. “Comparison of Inhibition Resistance Among PCR Reagents for Detection and Quantification of Environmental DNA.” Environmental DNA 1, no. 4: 359–367.
van der Heyde, M. , Bunce M., and Nevill P.. 2022. “Key Factors to Consider in the Use of Environmental DNA Metabarcoding to Monitor Terrestrial Ecological Restoration.” Science of the Total Environment 848: 157617. 10.1016/j.scitotenv.2022.157617. PubMed DOI
van der Heyde, M. , Bunce M., Wardell‐Johnson G., Fernandes K., White N. E., and Nevill P.. 2020. “Testing Multiple Substrates for Terrestrial Biodiversity Monitoring Using Environmental DNA Metabarcoding.” Molecular Ecology Resources 20, no. 3: 732–745. 10.1111/1755-0998.13148. PubMed DOI
Willerslev, E. , Davison J., Moora M., et al. 2014. “Fifty Thousand Years of Arctic Vegetation and Megafaunal Diet.” Nature 506, no. 7486: 47–51. PubMed
Yoccoz, N. G. , Bråthen K. A., Gielly L., et al. 2012. “DNA From Soil Mirrors Plant Taxonomic and Growth Form Diversity.” Molecular Ecology 21, no. 15: 3647–3655. PubMed
Zinger, L. , Bonin A., Alsos I. G., et al. 2019. “DNA Metabarcoding—Need for Robust Experimental Designs to Draw Sound Ecological Conclusions.” Molecular Ecology 28, no. 8: 1857–1862. 10.1111/mec.15060. PubMed DOI
Dryad
10.5061/dryad.dv41ns27x