Approaching Hypothetical RbTl in Experiments and Theory - X-ray Structure Determination of Cs1-xRbxTl (x = 0.18, 0.42) and a Solid Solution K1-xRbxTl (x ≤ 0.69)
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40176723
PubMed Central
PMC12001245
DOI
10.1021/acs.inorgchem.4c05305
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Although the binary alkali metal thallides ATl with A = Li, Na, K, and Cs have been reported in the literature, binary RbTl at ambient pressure is still missing. Experiments with a 1:1 ratio of Rb:Tl, either according to Zintl's procedure in low-temperature experiments in liquid ammonia or classical solid-state synthesis at high temperature, did not result in the desired product. Therefore, several ternary compositions with mixtures of K/Rb and Cs/Rb have been prepared. For K/Rb mixtures, a solid solution in the KTl structure type, up to a proportion of 69% rubidium, could be obtained. Site occupancy preferences for rubidium on the alkali metal sites in the KTl type are observed in experiments and supported by theoretical calculations. In contrast to Rb/K mixtures being realizable in the KTl structure type, Rb/Cs mixtures did not allow for the isolation of materials according to the CsTl structure type. Instead, two new monoclinic compounds could be isolated (Cs0.82Rb0.18Tl: C2/c, a = 14.4136(4) Å, b = 11.1678(3) Å, c = 40.8013(11) Å, β = 96.353(2)°, V = 6527.4(3) Å3; Cs0.58Rb0.42Tl: C2/c, a = 14.2610(3) Å, b = 11.1116(2) Å, c = 27.5589(7) Å, β = 104.056(2)°, V = 4236.30(17) Å3). Detailed DFT calculations on both binary and mixed cation systems were performed and support the experimental results.
Central Analytics University of Regensburg Universitätsstaße 31 Regensburg 93053 Germany
New Technologies Research Center University of West Bohemia Pilsen 301000 Czech Republic
Zobrazit více v PubMed
Zintl E.; Dullenkopf W. Über den Gitterbau von NaTl und seine Beziehung zu den Strukturen des Typus des β -Messings. Z. Phys. Chem. B 1932, 16 (1), 195–205. 10.1515/zpch-1932-1616. DOI
Pöttgen R.; Johrendt D.. Intermetallics, 2nd ed.; deGruyter, 2019, pp. 117–122.
Nesper R. The Zintl-Klemm Concept - A Historical Survey. Z. Anorg. Allg. Chem. 2014, 640 (14), 2639–2648. 10.1002/zaac.201400403. DOI
Laves F.Eduard Zintls Arbeiten über die Chemie und Struktur von Legierungen Naturwissenschaften, 1941, 244–255
Thümmel R.; Klemm W. Das Verhalten der Alkalimetalle zu den Metallen der Gruppe III B. Z. Anorg. Allg. Chem. 1970, 376 (1), 44–63. 10.1002/zaac.19703760107. DOI
Schneider J. Cation Short Range Order in Non-stoichiometric NaTl. Mater. Sci. Forum 1988, 27 (28), 63–68. 10.4028/www.scientific.net/MSF.27-28.63. DOI
Tiefenthaler S.; Korber N.; Gärtner S. Synthesis of the Tetragonal Phase of Zintl’s NaTl and Its Structure Determination from Powder Diffraction Data. Materials 2019, 12 (8), 1356–1366. 10.3390/ma12081356. PubMed DOI PMC
Tiefenthaler S. M.; Schlosser M.; Pielnhofer F.; Shenderovich I. G.; Pfitzner A.; Gärtner S. Investigations on Tetragonally Distorted Sodium Thallide NaTl-tI8. Z. Anorg. Allg. Chem. 2020, 646 (3), 82–87. 10.1002/zaac.201900269. DOI
Dong Z. C.; Corbett J. D. Synthesis, structure, and bonding of the novel cluster compound KTl with isolated Tl66- ions. J. Am. Chem. Soc. 1993, 115 (24), 11299–11303. 10.1021/ja00077a031. DOI
Dong Z. C.; Corbett J. D. CsTl: A new example of tetragonally compressed Tl66– octahedra. Electronic effects and packing requirements in the diverse structures of ATl (A = Li, Na, K, Cs). Inorg. Chem. 1996, 35 (8), 2301–2306. 10.1021/ic951265v. PubMed DOI
Wade K., Electron Deficient Compounds; Thomas Nelson and Sons Ltd/Springer, 1971
Wade K. Skeletal Electron Counting in Cluster Species. Some Generalisations and Predictions. Inorg. Nucl. Chem. Lett. 1972, 8 (6), 559–562. 10.1016/0020-1650(72)80141-7. DOI
Wade K. Structural and Bonding Patterns in Cluster Chemistry. Adv. Inorg. Radiochem. 1976, 18, 1–66. 10.1016/S0065-2792(08)60027-8. DOI
Wang F.; Wedig U.; Prasad D.; Jansen M. Deciphering the Chemical Bonding in Anionic Thallium Clusters. J. Am. Chem. Soc. 2012, 134 (48), 19884–19894. 10.1021/ja309852f. PubMed DOI
Schwinghammer V. F.; Gärtner S. [Tl7]7– Clusters in Mixed Alkali Metal Thallides Cs7.29K5.71Tl13 and Cs3.45K3.55Tl7. Inorg. Chem. 2024, 5, 20078–20082. 10.1021/acs.inorgchem.3c04034. PubMed DOI PMC
Gärtner S. Spotlight on Alkali Metals: The Structural Chemistry of Alkali Metal Thallides. Crystals 2020, 10 (11), 1013.10.3390/cryst10111013. DOI
Schmidt P. C. Electronic structure of intermetallic LiTl and NaTl. Phys. Rev. B 1985, 31 (8), 5015–5027. 10.1103/PhysRevB.31.5015. PubMed DOI
Evers J.High Pressure Investigations of AIBIII Zintl Compounds (AI = Li to Cs; BIII = Al to Tl) up to 30 GPa, Zintl Phases - Principles and Recent Developments, 1st ed.; Fässler T.; Springer-Verlag: Structure and Bonding, 2011; Vol. 139, pp. 57–96
Evers J.; Oehlinger G. After More than 60 Years, a New NaTl Type Zintl Phase: KTl at High Pressure. Inorg. Chem. 2000, 39, 628–629. 10.1021/ic990894s. PubMed DOI
Dong Z. C.; Corbett J. D. A15Tl27 (A = Rb,Cs): A structural type containing both isolated clusters and condensed layers based on the Tl11 fragment. Syntheses, structure, properties, and band structure. Inorg. Chem. 1996, 35 (6), 1444–1450. 10.1021/ic951086d. PubMed DOI
Blase W.; Cordier G.; Müller V.; Häussermann U.; Nesper R.; Somer M. Preparation and Crystal-Structures of Rb8In11, K8Tl11, and Rb8Tl11 Band-Strucutre Calculations on K8In11. J. Nat. Res. B 1993, 48 (6), 754–760. 10.1515/znb-1993-0609. DOI
Sevov S. C.; Corbett J. D. A Remarkable Hypoelectronic Indium Cluster in K8In11. Inorg. Chem. 1991, 30, 4875–4877. 10.1021/ic00026a004. DOI
Schwinghammer V. F.; Janesch M.; Kleemiss F.; Gärtner S. Single Crystal X-Ray Structure Analyses of Binary and Ternary Compounds A49Tl108+x (A = K, Rb, Cs; x = 0–1.76) Related to the K49Tl108 Type Structure. Z. Anorg. Allg. Chem. 2022, 648 (10), 1–7. 10.1002/zaac.202200117. DOI
Bushmanov V. D.; Yatsenko S. P. Immiscibility in Binary Systems of Cesium with Aluminium, Gallium, Indium and Thallium. Russ. Metall. 1981, 5, 157–160.
Hackspill L. Sur une nouvelle préparation du rubidium et du caesium. Cr. Hebd. Acad. Sci. 1905, 106–107.
CrysAlisPro; CrysAlisPro; Rigaku Oxford Diffraction; Agilent Technologies UK Ltd, 2020.
Sheldrick G. M. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A 2015, 71, 3–8. 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC
Bourhis L. J.; Dolomanov O. V.; Gildea R. J.; Howard J. A. K.; Puschmann H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected. Acta Crystallogr., Sect. A 2015, 71, 59–75. 10.1107/S2053273314022207. PubMed DOI PMC
Sheldrick G. M. A short history of SHELX. Acta Cryst. A 2008, 64 (1), 112–122. 10.1107/S0108767307043930. PubMed DOI
Dolomanov O. V.; Bourhis L. J.; Gildea R. J.; Howard J. A. K.; Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. 10.1107/S0021889808042726. DOI
Brandenburg K. Diamond; version 4.6.8; Crystal Impact GbR, 2021.
Toombs A.STOE WinXPOW; version 3.10; STOE & Cie GmbH, 2016.
Petrícek V.; Dusek M.; Palatinus L. Crystallographic Computing System JANA2006: General features. Z. Kristallogr.-Cryst. Mater. 2014, 229 (5), 345–352. 10.1515/zkri-2014-1737. DOI
Kresse G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. 10.1103/PhysRevB.59.1758. DOI
Kresse G.; Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. 10.1016/0927-0256(96)00008-0. PubMed DOI
Kresse G.; Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. 10.1103/PhysRevB.54.11169. PubMed DOI
Ebert H.; Ködderitzsch D.; Minár J. Calculating condensed matter properties using the KKR-Green’s function method-recent developments and applications. Rep. Prog. Phys. 2011, 74, 096501.10.1088/0034-4885/74/9/096501. DOI
Ebert H The Munich SPR-KKR package version 8.6; http://olymp.cup.uni-muenchen.de,. 2022.
Abrikosov I.; Johansson B. Applicability of the coherent-potential approximation in the theory of random alloys. Phys. Rev. B 1998, 57 (22), 14164–14173. 10.1103/PhysRevB.57.14164. DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (1), 3865–3868. 10.1103/PhysRevLett.78.1396. PubMed DOI
Monkhorst H. J.; Pack J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13 (12), 5188–5192. 10.1103/PhysRevB.13.5188. DOI
Kresse G.; Furthmüller J.; Hafner J. Ab initio force constant approach to phonon dispersion relations of diamond and graphite. Europhys. Lett. 1995, 32 (9), 729–734. 10.1209/0295-5075/32/9/005. DOI
Parlinski K.; Li Z.; Kawazoe Y. First-Principles Determination of the Soft Mode in Cubic ZrO2. Phys. Rev. Lett. 1997, 78 (21), 4063–4066. 10.1103/PhysRevLett.78.4063. DOI
Togo A.; Chaput L.; Tadano T.; Tanaka I. Implementation strategies in phonopy and phono3py. J. Phys-Condens Mater. 2023, 35, 353001.10.1088/1361-648X/acd831. PubMed DOI
Kroumova E.; Perez-Mato J. M.; Aroyo M. I. WYCKSPLIT: a computer program for determination of the relations of Wyckoff positions for a group-subgroup pair. J. Appl. Crystallogr. 1998, 31 (4), 646.10.1107/S0021889898005524. DOI
Aroyo M. I.; Kirov A.; Capillas C.; Perez-Mato J. M.; Wondratschek H. Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr., Sect. A 2006, 62, 115–128. 10.1107/S0108767305040286. PubMed DOI
Aroyo M. I.; Perez-Mato J. M.; Capillas C.; Kroumova E.; Ivantchev S.; Madariaga G.; Kirov A.; Wondratschek H. Bilbao crystallographic server: I. Databases and crystallographic computing programs. Z. Kristallogr. 2006, 221 (1), 15–27. 10.1524/zkri.2006.221.1.15. DOI
Aroyo M. I.; Perez-Mato J. M.; Orobengoa D.; Tasci E.; de la Flor G.; Kirov A. Crystallography online: Bilbao Crystallographic Server. Bulg. Chem. Commun. 2011, 43 (2), 183–197.
de la Flor G.; Orobengoa D.; Tasci E.; Perez-Mato J. M.; Aroyo M. I. Comparison of structures applying the tools available at the Bilbao Crystallographic Server. J. Appl. Crystallogr. 2016, 49, 653–664. 10.1107/S1600576716002569. DOI
Tasci E.; de la Flor G.; Orobengoa D.; Capillas C.; Perez-Mato J.; Aroyo M. An introduction to the tools hosted in the Bilbao Crystallographic Server. EPJ. Web Conference. 2012, 22, 00009.10.1051/epjconf/20122200009. DOI
Karpov A.; Jansen M. A10Tl6O2 (A = K, Rb) cluster compounds combining structural features of thallium cluster anions and of alkali metal sub-oxides. Chem. Commun. 2006, 16, 1706–1708. 10.1039/b601802e. PubMed DOI
Saltykov V.; Nuss J.; Jansen M. Cs10Tl6SiO4, Cs10Tl6GeO4, and Cs10Tl6SnO3 - First Oxotetrelate Thallides, Double Salts Containing ″Hypoelectronic″ Tl66– Clusters. Z. Anorg. Allg. Chem. 2011, 637 (9), 1163–1168. 10.1002/zaac.201000358. DOI
Warren B. E.; Jacob C. W. The Crystalline Structure of Uranium. J. Am. Chem. Soc. 1937, 59, 2588–2591. 10.1021/ja01291a035. DOI
Zachariasen W. H.; Ellinger F. H. Crystal Chemical Studies of the 5f-Series of Elements. XXIV. The Crystal Structure and Thermal Expansion of γ- Plutonium. Acta Crystallogr. 1955, 8 (7), 431–433. 10.1107/S0365110X55001357. DOI
Khan S.; Minár J.; Ebert H.; Blaha P.; Šipr O. Local environment effects in the magnetic properties and electronic structure of disordered FePt. Phys. Rev. B 2017, 95 (1), 014408.10.1103/PhysRevB.95.014408. DOI
Schwinghammer V. F.; Khan S. A.; Tiefenthaler S. M.; Kovářík T.; Minár J.; Gärtner S.. Approaching Hypothetical RbTl in Experiment and Theory - X-Ray Structure Determination of Cs1-xRbxTl (x = 0.18, 0.42) and a Solid Solution K1-xRbxTl (x ≤ 0.69) Preprint ChemRxiv 202510.26434/chemrxiv-2025-cwkdk PubMed DOI PMC