Approaching Hypothetical RbTl in Experiments and Theory - X-ray Structure Determination of Cs1-xRbxTl (x = 0.18, 0.42) and a Solid Solution K1-xRbxTl (x ≤ 0.69)

. 2025 Apr 14 ; 64 (14) : 6879-6887. [epub] 20250403

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40176723

Although the binary alkali metal thallides ATl with A = Li, Na, K, and Cs have been reported in the literature, binary RbTl at ambient pressure is still missing. Experiments with a 1:1 ratio of Rb:Tl, either according to Zintl's procedure in low-temperature experiments in liquid ammonia or classical solid-state synthesis at high temperature, did not result in the desired product. Therefore, several ternary compositions with mixtures of K/Rb and Cs/Rb have been prepared. For K/Rb mixtures, a solid solution in the KTl structure type, up to a proportion of 69% rubidium, could be obtained. Site occupancy preferences for rubidium on the alkali metal sites in the KTl type are observed in experiments and supported by theoretical calculations. In contrast to Rb/K mixtures being realizable in the KTl structure type, Rb/Cs mixtures did not allow for the isolation of materials according to the CsTl structure type. Instead, two new monoclinic compounds could be isolated (Cs0.82Rb0.18Tl: C2/c, a = 14.4136(4) Å, b = 11.1678(3) Å, c = 40.8013(11) Å, β = 96.353(2)°, V = 6527.4(3) Å3; Cs0.58Rb0.42Tl: C2/c, a = 14.2610(3) Å, b = 11.1116(2) Å, c = 27.5589(7) Å, β = 104.056(2)°, V = 4236.30(17) Å3). Detailed DFT calculations on both binary and mixed cation systems were performed and support the experimental results.

Zobrazit více v PubMed

Zintl E.; Dullenkopf W. Über den Gitterbau von NaTl und seine Beziehung zu den Strukturen des Typus des β -Messings. Z. Phys. Chem. B 1932, 16 (1), 195–205. 10.1515/zpch-1932-1616. DOI

Pöttgen R.; Johrendt D.. Intermetallics, 2nd ed.; deGruyter, 2019, pp. 117–122.

Nesper R. The Zintl-Klemm Concept - A Historical Survey. Z. Anorg. Allg. Chem. 2014, 640 (14), 2639–2648. 10.1002/zaac.201400403. DOI

Laves F.Eduard Zintls Arbeiten über die Chemie und Struktur von Legierungen Naturwissenschaften, 1941, 244–255

Thümmel R.; Klemm W. Das Verhalten der Alkalimetalle zu den Metallen der Gruppe III B. Z. Anorg. Allg. Chem. 1970, 376 (1), 44–63. 10.1002/zaac.19703760107. DOI

Schneider J. Cation Short Range Order in Non-stoichiometric NaTl. Mater. Sci. Forum 1988, 27 (28), 63–68. 10.4028/www.scientific.net/MSF.27-28.63. DOI

Tiefenthaler S.; Korber N.; Gärtner S. Synthesis of the Tetragonal Phase of Zintl’s NaTl and Its Structure Determination from Powder Diffraction Data. Materials 2019, 12 (8), 1356–1366. 10.3390/ma12081356. PubMed DOI PMC

Tiefenthaler S. M.; Schlosser M.; Pielnhofer F.; Shenderovich I. G.; Pfitzner A.; Gärtner S. Investigations on Tetragonally Distorted Sodium Thallide NaTl-tI8. Z. Anorg. Allg. Chem. 2020, 646 (3), 82–87. 10.1002/zaac.201900269. DOI

Dong Z. C.; Corbett J. D. Synthesis, structure, and bonding of the novel cluster compound KTl with isolated Tl66- ions. J. Am. Chem. Soc. 1993, 115 (24), 11299–11303. 10.1021/ja00077a031. DOI

Dong Z. C.; Corbett J. D. CsTl: A new example of tetragonally compressed Tl66– octahedra. Electronic effects and packing requirements in the diverse structures of ATl (A = Li, Na, K, Cs). Inorg. Chem. 1996, 35 (8), 2301–2306. 10.1021/ic951265v. PubMed DOI

Wade K., Electron Deficient Compounds; Thomas Nelson and Sons Ltd/Springer, 1971

Wade K. Skeletal Electron Counting in Cluster Species. Some Generalisations and Predictions. Inorg. Nucl. Chem. Lett. 1972, 8 (6), 559–562. 10.1016/0020-1650(72)80141-7. DOI

Wade K. Structural and Bonding Patterns in Cluster Chemistry. Adv. Inorg. Radiochem. 1976, 18, 1–66. 10.1016/S0065-2792(08)60027-8. DOI

Wang F.; Wedig U.; Prasad D.; Jansen M. Deciphering the Chemical Bonding in Anionic Thallium Clusters. J. Am. Chem. Soc. 2012, 134 (48), 19884–19894. 10.1021/ja309852f. PubMed DOI

Schwinghammer V. F.; Gärtner S. [Tl7]7– Clusters in Mixed Alkali Metal Thallides Cs7.29K5.71Tl13 and Cs3.45K3.55Tl7. Inorg. Chem. 2024, 5, 20078–20082. 10.1021/acs.inorgchem.3c04034. PubMed DOI PMC

Gärtner S. Spotlight on Alkali Metals: The Structural Chemistry of Alkali Metal Thallides. Crystals 2020, 10 (11), 1013.10.3390/cryst10111013. DOI

Schmidt P. C. Electronic structure of intermetallic LiTl and NaTl. Phys. Rev. B 1985, 31 (8), 5015–5027. 10.1103/PhysRevB.31.5015. PubMed DOI

Evers J.High Pressure Investigations of AIBIII Zintl Compounds (AI = Li to Cs; BIII = Al to Tl) up to 30 GPa, Zintl Phases - Principles and Recent Developments, 1st ed.; Fässler T.; Springer-Verlag: Structure and Bonding, 2011; Vol. 139, pp. 57–96

Evers J.; Oehlinger G. After More than 60 Years, a New NaTl Type Zintl Phase: KTl at High Pressure. Inorg. Chem. 2000, 39, 628–629. 10.1021/ic990894s. PubMed DOI

Dong Z. C.; Corbett J. D. A15Tl27 (A = Rb,Cs): A structural type containing both isolated clusters and condensed layers based on the Tl11 fragment. Syntheses, structure, properties, and band structure. Inorg. Chem. 1996, 35 (6), 1444–1450. 10.1021/ic951086d. PubMed DOI

Blase W.; Cordier G.; Müller V.; Häussermann U.; Nesper R.; Somer M. Preparation and Crystal-Structures of Rb8In11, K8Tl11, and Rb8Tl11 Band-Strucutre Calculations on K8In11. J. Nat. Res. B 1993, 48 (6), 754–760. 10.1515/znb-1993-0609. DOI

Sevov S. C.; Corbett J. D. A Remarkable Hypoelectronic Indium Cluster in K8In11. Inorg. Chem. 1991, 30, 4875–4877. 10.1021/ic00026a004. DOI

Schwinghammer V. F.; Janesch M.; Kleemiss F.; Gärtner S. Single Crystal X-Ray Structure Analyses of Binary and Ternary Compounds A49Tl108+x (A = K, Rb, Cs; x = 0–1.76) Related to the K49Tl108 Type Structure. Z. Anorg. Allg. Chem. 2022, 648 (10), 1–7. 10.1002/zaac.202200117. DOI

Bushmanov V. D.; Yatsenko S. P. Immiscibility in Binary Systems of Cesium with Aluminium, Gallium, Indium and Thallium. Russ. Metall. 1981, 5, 157–160.

Hackspill L. Sur une nouvelle préparation du rubidium et du caesium. Cr. Hebd. Acad. Sci. 1905, 106–107.

CrysAlisPro; CrysAlisPro; Rigaku Oxford Diffraction; Agilent Technologies UK Ltd, 2020.

Sheldrick G. M. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A 2015, 71, 3–8. 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC

Bourhis L. J.; Dolomanov O. V.; Gildea R. J.; Howard J. A. K.; Puschmann H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected. Acta Crystallogr., Sect. A 2015, 71, 59–75. 10.1107/S2053273314022207. PubMed DOI PMC

Sheldrick G. M. A short history of SHELX. Acta Cryst. A 2008, 64 (1), 112–122. 10.1107/S0108767307043930. PubMed DOI

Dolomanov O. V.; Bourhis L. J.; Gildea R. J.; Howard J. A. K.; Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. 10.1107/S0021889808042726. DOI

Brandenburg K. Diamond; version 4.6.8; Crystal Impact GbR, 2021.

Toombs A.STOE WinXPOW; version 3.10; STOE & Cie GmbH, 2016.

Petrícek V.; Dusek M.; Palatinus L. Crystallographic Computing System JANA2006: General features. Z. Kristallogr.-Cryst. Mater. 2014, 229 (5), 345–352. 10.1515/zkri-2014-1737. DOI

Kresse G.; Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. 10.1103/PhysRevB.59.1758. DOI

Kresse G.; Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. 10.1016/0927-0256(96)00008-0. PubMed DOI

Kresse G.; Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. 10.1103/PhysRevB.54.11169. PubMed DOI

Ebert H.; Ködderitzsch D.; Minár J. Calculating condensed matter properties using the KKR-Green’s function method-recent developments and applications. Rep. Prog. Phys. 2011, 74, 096501.10.1088/0034-4885/74/9/096501. DOI

Ebert H The Munich SPR-KKR package version 8.6; http://olymp.cup.uni-muenchen.de,. 2022.

Abrikosov I.; Johansson B. Applicability of the coherent-potential approximation in the theory of random alloys. Phys. Rev. B 1998, 57 (22), 14164–14173. 10.1103/PhysRevB.57.14164. DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (1), 3865–3868. 10.1103/PhysRevLett.78.1396. PubMed DOI

Monkhorst H. J.; Pack J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13 (12), 5188–5192. 10.1103/PhysRevB.13.5188. DOI

Kresse G.; Furthmüller J.; Hafner J. Ab initio force constant approach to phonon dispersion relations of diamond and graphite. Europhys. Lett. 1995, 32 (9), 729–734. 10.1209/0295-5075/32/9/005. DOI

Parlinski K.; Li Z.; Kawazoe Y. First-Principles Determination of the Soft Mode in Cubic ZrO2. Phys. Rev. Lett. 1997, 78 (21), 4063–4066. 10.1103/PhysRevLett.78.4063. DOI

Togo A.; Chaput L.; Tadano T.; Tanaka I. Implementation strategies in phonopy and phono3py. J. Phys-Condens Mater. 2023, 35, 353001.10.1088/1361-648X/acd831. PubMed DOI

Kroumova E.; Perez-Mato J. M.; Aroyo M. I. WYCKSPLIT: a computer program for determination of the relations of Wyckoff positions for a group-subgroup pair. J. Appl. Crystallogr. 1998, 31 (4), 646.10.1107/S0021889898005524. DOI

Aroyo M. I.; Kirov A.; Capillas C.; Perez-Mato J. M.; Wondratschek H. Bilbao crystallographic server. II. Representations of crystallographic point groups and space groups. Acta Crystallogr., Sect. A 2006, 62, 115–128. 10.1107/S0108767305040286. PubMed DOI

Aroyo M. I.; Perez-Mato J. M.; Capillas C.; Kroumova E.; Ivantchev S.; Madariaga G.; Kirov A.; Wondratschek H. Bilbao crystallographic server: I. Databases and crystallographic computing programs. Z. Kristallogr. 2006, 221 (1), 15–27. 10.1524/zkri.2006.221.1.15. DOI

Aroyo M. I.; Perez-Mato J. M.; Orobengoa D.; Tasci E.; de la Flor G.; Kirov A. Crystallography online: Bilbao Crystallographic Server. Bulg. Chem. Commun. 2011, 43 (2), 183–197.

de la Flor G.; Orobengoa D.; Tasci E.; Perez-Mato J. M.; Aroyo M. I. Comparison of structures applying the tools available at the Bilbao Crystallographic Server. J. Appl. Crystallogr. 2016, 49, 653–664. 10.1107/S1600576716002569. DOI

Tasci E.; de la Flor G.; Orobengoa D.; Capillas C.; Perez-Mato J.; Aroyo M. An introduction to the tools hosted in the Bilbao Crystallographic Server. EPJ. Web Conference. 2012, 22, 00009.10.1051/epjconf/20122200009. DOI

Karpov A.; Jansen M. A10Tl6O2 (A = K, Rb) cluster compounds combining structural features of thallium cluster anions and of alkali metal sub-oxides. Chem. Commun. 2006, 16, 1706–1708. 10.1039/b601802e. PubMed DOI

Saltykov V.; Nuss J.; Jansen M. Cs10Tl6SiO4, Cs10Tl6GeO4, and Cs10Tl6SnO3 - First Oxotetrelate Thallides, Double Salts Containing ″Hypoelectronic″ Tl66– Clusters. Z. Anorg. Allg. Chem. 2011, 637 (9), 1163–1168. 10.1002/zaac.201000358. DOI

Warren B. E.; Jacob C. W. The Crystalline Structure of Uranium. J. Am. Chem. Soc. 1937, 59, 2588–2591. 10.1021/ja01291a035. DOI

Zachariasen W. H.; Ellinger F. H. Crystal Chemical Studies of the 5f-Series of Elements. XXIV. The Crystal Structure and Thermal Expansion of γ- Plutonium. Acta Crystallogr. 1955, 8 (7), 431–433. 10.1107/S0365110X55001357. DOI

Khan S.; Minár J.; Ebert H.; Blaha P.; Šipr O. Local environment effects in the magnetic properties and electronic structure of disordered FePt. Phys. Rev. B 2017, 95 (1), 014408.10.1103/PhysRevB.95.014408. DOI

Schwinghammer V. F.; Khan S. A.; Tiefenthaler S. M.; Kovářík T.; Minár J.; Gärtner S.. Approaching Hypothetical RbTl in Experiment and Theory - X-Ray Structure Determination of Cs1-xRbxTl (x = 0.18, 0.42) and a Solid Solution K1-xRbxTl (x ≤ 0.69) Preprint ChemRxiv 202510.26434/chemrxiv-2025-cwkdk PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...