In vitro and in vivo evaluation of anti-HER2 antibody conjugates labelled with 225Ac

. 2025 Apr 04 ; 10 (1) : 16. [epub] 20250404

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40183827

Grantová podpora
TJ04000129 Technologická Agentura České Republiky
TO01000074 Technologická Agentura České Republiky
TN02000109 Technologická Agentura České Republiky
SGS22/188/OHK4/3T/14 České Vysoké Učení Technické v Praze
8J20PL016 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_008/0004644 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023053 Ministerstvo Školství, Mládeže a Tělovýchovy
NU23 08 00214 Agentura Pro Zdravotnický Výzkum České Republiky
IGA LF UP 2024_007 Internal Grant Agency of Palacky University

Odkazy

PubMed 40183827
PubMed Central PMC11971111
DOI 10.1186/s41181-025-00337-8
PII: 10.1186/s41181-025-00337-8
Knihovny.cz E-zdroje

BACKGROUND: Overexpression of human epidermal growth factor receptor type 2 (HER2) occurs in multiple carcinomas. For example, up to 20% of breast cancer cases are classified as HER2 positive (HER2+). Treatment of this condition typically involves immunotherapy using monoclonal antibodies, such as trastuzumab or pertuzumab. The precise targeting of monoclonal antibodies to HER2+ tumour lesions can be used as well in radioimmunotherapy to deliver medical radionuclides exactly to the afflicted area and therefore minimize radiation exposure of healthy tissues. In this study, DOTA conjugates of monoclonal antibodies trastuzumab and pertuzumab were prepared and tested in vitro. One of these, 225Ac-DOTA-pertuzumab, was also the subject of an ex vivo biodistribution study with normal as well as HER2+ and HER2- tumour-xenografted mice. This radioconjugate has not been previously described. RESULTS: Three DOTA-conjugates of HER2 targeting monoclonal antibodies, one of trastuzumab and two of pertuzumab, were prepared and radiolabelled with 225Ac in different molar ratios. This procedure led to an optimisation of the preparation and radiolabelling process. The radioconjugates were shown to be highly stable in vitro in both fetal bovine serum and phosphate buffered saline under room temperature and decreased temperature for 10 days. In vitro cell studies with HER2-overexpressing cell-line (SKOV-3) and low HER2-expressing cell line (MDA-MB-231) proved that radioconjugates of both antibodies have high binding specificity and affinity towards HER2 receptors. These findings were confirmed for a novel radioconjugate 225Ac-DOTA-pertuzumab in an ex vivo biodistribution study, where uptake in HER2+ tumour was 50 ± 14% ID/g and HER2- tumour showed uptake comparable with healthy tissues (max. 5.0 ± 1.7% ID/g). The high uptake observed in the spleen can be attributed to the elimination of the antibody, as well as the use of an immunedeficient mouse strain (SCID). CONCLUSIONS: During this study, the optimization of preparation and radiolabelling of HER2 targeting antibodies with 225Ac was accomplished. Furthermore, the radioconjugate 225Ac-DOTA-pertuzumab was prepared and evaluated for the first time. The radioconjugates of both tested antibodies demonstrated excellent qualities in terms of stability and HER2 receptor affinity. Initial ex vivo studies indicated that especially the radioconjugate 225Ac-DOTA-pertuzumab is a very promising candidate for further more detailed in vivo studies.

Zobrazit více v PubMed

Abbas N, Heyerdahl H, Bruland OS, Borrebæk J, Nesland J, Dahle J. Experimental α-particle radioimmunotherapy of breast cancer using 227Th-labeled p-benzyl-DOTA-trastuzumab. EJNMMI Res. 2011;1:18. PubMed PMC

Angelis V, Okines AFC. Systemic therapies for HER2-positive advanced breast cancer. Cancers. 2024;16:23. PubMed PMC

Beheshti A, Wage J, McDonald JT, Lamont C, Peluso M, Hahnfeldt P, et al. Tumor-host signaling interaction reveals a systemic, age-dependent splenic immune influence on tumor development. Oncotarget. 2015;6:35419–32. PubMed PMC

Bensch F, Brouwers AH, Lub-de Hooge MN, de Jong JR, van der Vegt B, Sleijfer S, et al. 89Zr-trastuzumab PET supports clinical decision making in breast cancer patients, when HER2 status cannot be determined by standard work up. Eur J Nucl Med Mol Imaging. 2018;45:2300–23. PubMed PMC

Borchardt PE, Yuan RR, Miederer M, McDevitt MR, Scheinberg DA. Targeted actinium-225 in vivo generators for therapy of ovarian cancer. Cancer Res. 2003;63:5084–90. PubMed

Bronte V, Pittet MJ. The spleen in local and systemic regulation of immunity. Immunity. 2013;39:806–18. PubMed PMC

Chigoho DM, Bridoux J, Hernot S. Reducing the renal retention of low- to moderate-molecular-weight radiopharmaceuticals. Curr Opin Chem Biol. 2021;63:219–28. PubMed

Chomet M, van Dongen GAMS, Vugts DJ. State of the art in radiolabeling of antibodies with common and uncommon radiometals for preclinical and clinical immuno-PET. Bioconjug Chem. 2021;32:1315–30. PubMed PMC

Cruz VL, Souza-Egipsy V, Gion M, Pérez-García J, Cortes J, Ramos J, et al. Binding affinity of trastuzumab and pertuzumab monoclonal antibodies to extracellular HER2 domain. Int J Mol Sci. 2023;24:1203. PubMed PMC

de Melo GD, Jardim DL, Marchesi MS, Hortobagyi GN. Mechanisms of resistance and sensitivity to anti-HER2 therapies in HER2+ breast cancer. Oncotarget. 2016;7:64431–46. PubMed PMC

de Roode KE, Joosten L, Behe M. Towards the magic radioactive bullet: improving targeted radionuclide therapy by reducing the renal retention of radioligands. Pharmaceuticals. 2024;16:256. PubMed PMC

Deal KA, Davis IA, Mirzadeh S, Kennel SJ, Brechbiel MW. Improved in vivo stability of actinium-225 macrocyclic complexes. J Med Chem. 1999;42:2988–92. PubMed

Dekempeneer Y, Caveliers V, Ooms M, Maertens D, Gysemans M, Lahoutte T, et al. Therapeutic efficacy of 213Bi-labeled sdAbs in a preclinical model of ovarian cancer. Mol Pharm. 2020;17:3553–66. PubMed

Dijkers EC, Kosterink JG, Rademaker AP, Perk LR, van Dongen GA, Bart J, et al. Development and characterization of clinical-grade 89Zr-trastuzumab for HER2/neu immunoPET imaging. J Nucl Med. 2009;50:974–81. PubMed

Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–68. PubMed PMC

Guleria M, Sharma R, Amirdhanayagam J, Sarma HD, Rangarajan V, Dash A, et al. Formulation and clinical translation of [177Lu]Lu-trastuzumab for radioimmunotheranostics of metastatic breast cancer. RSC Med Chem. 2020;12:263–77. PubMed PMC

Hennrich U, Kopka K. Lutathera®: the first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals. 2019;12:114. PubMed PMC

Hodgson A, Wier EM, Fu K, Sun X, Wan F. Ultrasound imaging of splenomegaly as a proxy to monitor colon tumor development in Apc(min716/+) mice. Cancer Med. 2016;5:2469–76. PubMed PMC

Hooijman EL, Radchenko V, Ling SW, Konijnenberg M, Brabander T, Koolen SLW, et al. Implementing Ac-225 labelled radiopharmaceuticals: practical considerations and (pre-)clinical perspectives. EJNMMI Radiopharm Chem. 2024;9:9. PubMed PMC

Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (HER2) in Cancers: overexpression and therapeutic implications. Mol Biol Int. 2014;2014(1):852748. PubMed PMC

Kang M, Shin JI, Han S, Kim JY, Park J, Kim KI, et al. Therapeutic response monitoring with 89Zr-DFO-pertuzumab in HER2-positive and trastuzumab-resistant breast cancer models. Pharmaceutics. 2022;14:1338. PubMed PMC

Karczmarczyk U, Sawicka A, Garnuszek P, Maurin M, Wojdowska W. Does the number of bifunctional chelators conjugated to a mAb affect the biological activity of its radio-labeled counterpart? Discussion using the example of mAb against CD-20 labeled with 90Y or 177Lu. J Med Chem. 2022;65:6419–30. PubMed PMC

Kondo M, Cai Z, Chan C, Forkan N, Reilly RM. [225Ac]Ac- and [111In]In-DOTA-trastuzumab theranostic pair: cellular dosimetry and cytotoxicity in vitro and tumour and normal tissue uptake in vivo in NRG mice with HER2-positive human breast cancer xenografts. EJNMMI Radiopharm Chem. 2023;8:24. PubMed PMC

Kratochwil C, Giesel FL, Bruchertseifer F, Mier W, Apostolidis C, Boll R, et al. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience. Eur J Nucl Med Mol Imaging. 2014;41:2106–19. PubMed PMC

Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57:1941–4. PubMed

Kratochwil C, Bruchertseifer F, Rathke H, Bronzel M, Apostolidis C, Weichert W, et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med. 2017;58:1624–31. PubMed

Kreutzfeldt J, Rozeboom B, Dey N, De P. The trastuzumab era: current and upcoming targeted HER2+ breast cancer therapies. Am J Cancer Res. 2020;10:1045–67. PubMed PMC

Krolicki L, Morgenstern A, Kunikowska J, Koziara H, Krolicki B, Jakucinski M, et al. Alpha therapy with 213Bi-DOTA-substance P in recurrent glioblastoma multiforme. J Nucl Med. 2016;57(Suppl 2):632. PubMed

Larson S, Carrasquillo J, Cheung NK, Press OW. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15:347–60. PubMed PMC

Lee HJ, Ehlerding EB, Jiang D, Barnhart TE, Cao T, Wei W, et al. Dual-labeled pertuzumab for multimodality image-guided ovarian tumor resection. Am J Cancer Res. 2019;9:1454–68. PubMed PMC

Li HK, Morokoshi Y, Kodaira S, Kusumoto T, Minegishi K, Kanda H, et al. Utility of 211At-trastuzumab for the treatment of metastatic gastric cancer in the liver: evaluation of a preclinical α-radioimmunotherapy approach in a clinically relevant mouse model. J Nucl Med. 2021;62:1468–74. PubMed PMC

Lua WH, Ling WL, Yeo JY, Poh JJ, Lane DP, Gan SK. The effects of antibody engineering CH and CL in trastuzumab and pertuzumab recombinant models: Impact on antibody production and antigen-binding. Sci Rep. 2018;8:718. PubMed PMC

Lub-de Hooge MN, Kosterink JG, Perik PJ, Nijnuis H, Tran L, Bart J, et al. Preclinical characterisation of 111In-DTPA-trastuzumab. Br J Pharmacol. 2004;143:99–106. PubMed PMC

Maguire WF, McDevitt MR, Smith-Jones PM, Scheinberg DA. Efficient one-step radiolabeling of monoclonal antibodies to high specific activity with actinium-225 for α-particle radioimmunotherapy of cancer. J Nucl Med. 2014;55:1492–8. PubMed PMC

Marquez BV, Ikotun OF, Zheleznyak A, Wright B, Hari-Raj A, Pierce RA, et al. Evaluation of 89Zr-pertuzumab in Breast cancer xenografts. Mol Pharm. 2014;11:3988–95. PubMed PMC

McDevitt MR, Ma D, Lai LT, Simon J, Borchardt P, Frank RK, et al. Tumor therapy with targeted atomic nanogenerators. Science. 2001;294:1537–40. PubMed

McDevitt MR, Ma D, Simon J, Frank RK, Scheinberg DA. Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl Radiat Isot. 2002;57:841–7. PubMed

Menon SR, Mitra A, Chakraborty A, Tawate M, Sahu S, Rakshit S, et al. Clinical dose preparation of [177Lu]Lu-DOTA-pertuzumab using medium specific activity [177Lu]LuCl3 for radioimmunotherapy of breast and epithelial ovarian cancers, with HER2 receptor overexpression. Cancer Biother Radiopharm. 2022;37:384–402. PubMed

Mertens B, de Araujo Nogueira TC, Topalis D, Stranska R, Snoeck R, Andrei G. Investigation of tumor-tumor interactions in a double human cervical carcinoma xenograft model in nude mice. Oncotarget. 2018;9(31):21978. PubMed PMC

Milenic DE, Garmestani K, Brady ED, Albert PS, Ma D, Abdulla A, et al. Alpha-particle radioimmunotherapy of disseminated peritoneal disease using a (212)Pb-labeled radioimmunoconjugate targeting HER2. Cancer Biother Radiopharm. 2005;20:557–68. PubMed

Mitri Z, Constantine T, O’Regan R. The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract. 2012;2012(1):743193. PubMed PMC

Morgenstern A, Apostolidis C, Kratochwil C, Sathekde M, Krolicki L, Bruchertseifer F. An overview of targeted alpha therapy with 225Actinium and 213Bismuth. Curr Radiopharm. 2018;11:200–8. PubMed PMC

Narwadkar YS, Parghane RV, Sahu S, Lad S, Deep K, Wanage G, et al. Clinical Internal dosimetry and biodistribution of 177Lu-DOTA-trastuzumab in HER2-positive metastatic and locally advanced breast carcinoma. Clin Nucl Med. 2024;49:e149–55. PubMed

Neve RM, Lane HA, Hynes NE. The role of overexpressed HER2 in transformation. Ann Oncol. 2001;12(Suppl 1):S9-13. PubMed

O’Donoghue JA, Lewis JS, Pandit-Taskar N, Fleming SE, Schöder H, Larson SM, et al. Pharmacokinetics, biodistribution, and radiation dosimetry for 89Zr-trastuzumab in patients with esophagogastric cancer. J Nucl Med. 2018;59:161–6. PubMed PMC

Perik PJ, Lub-De Hooge MN, Gietema JA, van der Graaf WT, de Korte MA, Jonkman S, et al. Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2006;24:2276–82. PubMed

Pruszynski M, D’Huyvetter M, Bruchertseifer F, Morgenstern A, Lahoutte T. Evaluation of an Anti-HER2 nanobody labeled with 225Ac for targeted α-particle therapy of cancer. Mol Pharm. 2018;15(4):1457–66. PubMed

Puttemans J, Dekempeneer Y, Eersels JL, Hanssens H, Debie P, Keyaerts M, et al. Preclinical targeted α- and β–radionuclide therapy in HER2-positive brain metastasis using camelid single-domain antibodies. Cancers (Basel). 2020;12:1017. PubMed PMC

Rasaneh S, Rajabi H, Hossein Babaei M, Johari DF. Toxicity of trastuzumab labeled 177Lu on MCF7 and SKBr 3 cell lines. Appl Radiat Isot. 2010a;68:1964–6. PubMed

Rasaneh S, Rajabi H, Babaei MH, Daha FJ. Synthesis and biodistribution studies of 177Lu-trastuzumab as a therapeutic agent in the breast cancer mice model. J Label Compd Radiopharm. 2010b;53:575–9.

Rodak M, Dekempeneer Y, Wojewódzka M, Cavaliers V, Covens P, Miller BW, et al. Preclinical evaluation of 225Ac-labeled single-domain antibody for the treatment of HER2pos cancer. Mol Cancer Ther. 2022;21:1835–45. PubMed PMC

Rondon A, Rouanet J, Degoul F. Radioimmunotherapy in oncology: overview of the last decade clinical trials. Cancers. 2021;13:5570. PubMed PMC

Rubin I, Yarden Y. The basic biology of HER2. Ann Oncol. 2001;12(Suppl 1):S3-8. PubMed

Sakmár M, Kozempel J, Kučka J, Janská T, Štíbr M, Ondrák L, et al. In vitro and in vivo study of 221Fr and 213Bi progeny release from the 225Ac-labelled TiO2 nanoparticles. Nucl Med Biol. 2024;140–141:108973. PubMed

Scheinberg DA, McDevitt MR. Actinium-225 in targeted alpha-particle therapeutic applications. Curr Radiopharm. 2011;4:306–20. PubMed PMC

Sharma SK, Chow A, Monette S, Vivier D, Pourat J, Edwards KJ, et al. Fc-mediated anomalous biodistribution of therapeutic antibodies in immunodeficient mouse models. Cancer Res. 2018;78:1820–32. PubMed PMC

Stanowicka-Grada M, Senkus E. Anti-HER2 drugs for the treatment of advanced HER2 positive breast cancer. Curr Treat Options Oncol. 2023;24:1633–50. PubMed PMC

Summary of product characteristics Herceptin, Roche Registration GmBH, 2000. Available from: https://ec.europa.eu/health/documents/community-register/2021/20210901152295/anx_152295_cs.pdf

Summary of product characteristics Perjeta, Roche Registration GmBH, 2013. Available from: https://www.ema.europa.eu/en/documents/product-information/perjeta-epar-product-information_en.pdf

Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. Nat Rev Cancer. 2013;13:739–52. PubMed PMC

Thiele NA, Wilson JJ. Actinium-225 for targeted α therapy: coordination chemistry and current chelation approaches. Cancer Biother Radiopharm. 2018;33:336–48. PubMed PMC

Ugel S, Peranzoni E, Desantis G, Chioda M, Walter S, Weinschenk T, et al. Immune tolerance to tumor antigens occurs in a specialized environment of the spleen. Cell Rep. 2012;2:628–39. PubMed

Ulaner GA, Lyashchenko SK, Riedl C, Ruan S, Zanzonico PB, Lake D, et al. First-in-human human epidermal growth factor receptor 2-targeted imaging using 89Zr-pertuzumab PET/CT: dosimetry and clinical application in patients with breast cancer. J Nucl Med. 2018;59:900–6. PubMed PMC

Wang J, Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther. 2019;4:34. PubMed PMC

Xiao LS, Hu CY, Cui H, Li RN, Hong C, Li QM, et al. Splenomegaly in predicting the survival of patients with advanced primary liver cancer treated with immune checkpoint inhibitors. Cancer Med. 2022;11:4880–8. PubMed PMC

Zeglis BM, Lewis JS. A practical guide to the construction of radiometallated bioconjugates for positron emission tomography. Dalton Trans. 2011;40:6168–95. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...