Addition of Lithium Silylamides to 1,2-Dicyanobenzene: Isoindoline-1,3-diimine Derivatives Investigated by NMR/XRD/DFT Approach
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40198575
PubMed Central
PMC12015960
DOI
10.1021/acs.inorgchem.5c00573
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Phthalocyanines and their building blocks, isoindoline-1,3-diimines (diiminoisoindoles, DIIs), represent a structurally diverse class of compounds with the ability to make metal complexes and perform in various fields from medicine to photovoltaics and homogeneous catalysis. According to the present study, monosubstituted diiminoisoindoles, their higher homologues, and complexes can be effectively prepared by addition of silylated lithium amides to 1,2-dicyanobenzene followed by mild protonolysis or a condensation. An addition of DII to carbodiimides or reactions of lithiated DIIs with acyl chlorides give DII-guanidines and amido derivatives. The imino group of the amido derivatives is preferentially and quantitatively reduced by sodium borohydride. Dynamic behavior and structure of all studied classes of compounds were investigated from the stereochemical point of view─possible E/Z-isomerization and dimerization (DIIs and amido derivatives), tautomerism (guanidines), and stability both in solution and in solid state. The resonance-assisted hydrogen bonds are present in all species except reduced amides, predetermining them to be exceptional ligands in coordination chemistry.
See more in PubMed
Jiang J., Ed. Functional Phthalocyanine Molecular Materials; Structure and Bonding; Springer: Berlin, Heidelberg, 2010.
Speck K.; Magauer T. The Chemistry of Isoindole Natural Products. Beilstein J. Org. Chem. 2013, 9, 2048–2078. 10.3762/bjoc.9.243. PubMed DOI PMC
Radtke V.; Erk P.; Sens B.. Isoindoline Pigments. High Performance Pigments; Wiley-VCH, 2009; pp 221–241.
Schrage B. R.; Nemykin V. N.; Ziegler C. J. Biliazine Meso Hydrogen Bond: A Ring Open Phthalocyanine Analog With a Meso Hydrogen Bond. Chem. Commun. 2020, 56 (49), 6628–6631. 10.1039/D0CC03060K. PubMed DOI
Costa R.; Schick A. J.; Paul N. B.; Durfee W. S.; Ziegler C. J. Hydroxybenziphthalocyanines: Non-Aromatic Phthalocyanine Analogues That Exhibit Strong Uv-Visible Absorptions. New J. Chem. 2011, 35 (4), 794–799. 10.1039/c0nj00500b. DOI
Muranaka A.; Ohira S.; Hashizume D.; Koshino H.; Kyotani F.; Hirayama M.; Uchiyama M. [18]/[20]Π Hemiporphyrazine: A Redox-Switchable Near-Infrared Dye. J. Am. Chem. Soc. 2012, 134 (1), 190–193. 10.1021/ja210410c. PubMed DOI
Barone N.; Costa R.; Sripothangnok S.; Ziegler C. J. Dihydroxy- and Tetrahydroxydicarbahemiporphyrazine: Phthalocyanine Analogues With Phenol and Resorcinol Units. Eur. J. Inorg. Chem. 2010, 2010 (5), 775–780. 10.1002/ejic.200900921. DOI
Kadam M. M. L.; Patil D.; Sekar N. 4-(Diethylamino) Salicylaldehyde Based Fluorescent Salen Ligand With Red-Shifted Emission – A Facile Synthesis and DFT Investigation. J. Lumin. 2018, 204 (204), 354–367. 10.1016/j.jlumin.2018.08.040. DOI
Schrage B. R.; Nemykin V. N.; Ziegler C. J. Boshpy Fluorophores: Bodipy Analogues With Single Atom Controlled Aggregation. Org. Lett. 2021, 23 (13), 5246–5250. 10.1021/acs.orglett.1c01776. PubMed DOI
Dydio P.; Zieliński T.; Jurczak J. Bishydrazide Derivatives of Isoindoline as Simple Anion Receptors. J. Org. Chem. 2009, 74 (4), 1525–1530. 10.1021/jo802288u. PubMed DOI
Benkó T.; Lukács D.; Frey K.; Németh M.; Móricz M. M.; Liu D.; Kováts É.; May N. V.; Vayssieres L.; Li M.; Pap J. S. Redox-Inactive Metal Single-Site Molecular Complexes: A New Generation of Electrocatalysts for Oxygen Evolution?. Catal. Sci. Technol. 2021, 11 (19), 6411–6424. 10.1039/D1CY01087E. DOI
Grant E. B.; Guiadeen D.; Singer M.; Argentieri D.; Hlasta D. J.; Wachter M. Design, Synthesis, and Biological Activity of Diiminoisoindolines as Complement Component 3A Antagonists. Bioorg. Med. Chem. Lett. 2001, 11 (21), 2817–2820. 10.1016/S0960-894X(01)00522-4. PubMed DOI
Mombelli P.; Witschel M. C.; van Zijl A. W.; Brun R.; Diederich F.; et al. Identification of 1,3-Diiminoisoindoline Carbohydrazides as Potential Antimalarial Candidates. ChemMedChem 2012, 7, 151–158. 10.1002/cmdc.201100441. PubMed DOI
Clark P. F.; Elvidge J. A.; Linstead R. P. 722. Heterocyclic Imines and Amines. Part II. Derivatives of Isoindoline and Isoindolenine. J. Chem. Soc. (Resumed) 1953, 3593–3601. 10.1039/jr9530003593. DOI
Clark P. F.; Elvidge J. A.; Golden J. H. 799. Heterocyclic Imines and Amines. Part Vii. N-Substituted Phthalic Imidine Derivatives and Their Reactions With Amines. J. Chem. Soc. 1956, 4135–4143. 10.1039/jr9560004135. DOI
Spiessens L. I.; Anteunis M. J. O. NMR Studies on Imidines. V. 1H and 13C Nuclear Magnetic Resonance Study Of The Tautomerism and Geometrical Isomerism of 1,3-Bis(Arylimino)Isoindolines. Bull. Soc. Chim. Belg. 1984, 93 (3), 205–222. 10.1002/bscb.19840930306. DOI
Spiessens L. I.; Anteunis M. J. O. NMR Studies on Imidines. Vii. The Tautomerism of Mono-N-Aryl Substituted Phthalic Imidines. A 1H and 13C Nuclear Magnetic Resonance Study. Bull. Soc. Chim. Belg. 1988, 97 (6), 431–452. 10.1002/bscb.19880970604. DOI
Siegl W. O. A new bis-cheiating ligand system. Synthesis and chelating behavior. Inorg. Chim. Acta 1977, 25, L65–L66. 10.1016/S0020-1693(00)95647-0. DOI
Tamgho I.-S.; Engle J. T.; Ziegler C. J. The Syntheses and Structures of Bis(Alkylimino)Isoindolines. Tetrahedron Lett. 2013, 54 (45), 6114–6117. 10.1016/j.tetlet.2013.08.134. DOI
Camerano J. A.; Sämann C.; Wadepohl H.; Gade L. H. Bis(Pyridylimino)Isoindolato–Iridium Complexes as Epoxidation Catalysts for Alkenes. Organometallics 2011, 30 (3), 379–382. 10.1021/om1010116. DOI
Müller A. L.; Bleith T.; Roth T.; Wadepohl H.; Gade L. H. Iridium Half-Sandwich Complexes With Di- And Tridentate Bis(Pyridylimino)Isoindolato Ligands: Stoichiometric and Catalytic Reactivity. Organometallics 2015, 34 (11), 2326–2342. 10.1021/om501138t. DOI
Müller A. L.; Wadepohl H.; Gade L. H. Bis(Pyridylimino)Isoindolato (Bpi) Osmium Complexes: Structural Chemistry and Reactivity. Organometallics 2015, 34 (12), 2810–2818. 10.1021/acs.organomet.5b00080. DOI
Sauer D. C.; Kruck M.; Wadepohl H.; Enders M.; Gade L. H. Spin Density Distribution In Iron(Ii) and Cobalt(Ii) Alkyl Complexes Containing 1,3-Bis(2-Pyridylimino)Isoindolate Ligands. Organometallics 2013, 32 (3), 885–892. 10.1021/om301198b. DOI
Schrage B. R.; Vitale D.; Kelly K. A.; Nemykin V. N.; Herrick R. S.; Ziegler C. J. Binding A Meridional Ligand in a Facial Geometry: A Square Peg in a Round Hole. J. Organomet. Chem. 2020, 919, 12133110.1016/j.jorganchem.2020.121331. PubMed DOI PMC
Martić G.; Engle J. T.; Ziegler C. J. Complexes of 1,3-Bis(2-Thiazolylimino)Isoindoline With Middle and Late First Row Transition Metals. Inorg. Chem. Commun. 2011, 14 (11), 1749–1752. 10.1016/j.inoche.2011.08.001. DOI
Osinski A. J.; Morris D. L.; Herrick R. S.; Ziegler C. J. Re(Co) 3 -Templated Synthesis Of A-Amidinoazadi(Benzopyrro)Methenes. Inorg. Chem. 2017, 56 (24), 14734–14737. 10.1021/acs.inorgchem.7b02140. PubMed DOI PMC
Sevov C. S.; Fisher S. L.; Thompson L. T.; Sanford M. S. Mechanism-Based Development of a Low-Potential, Soluble, and Cyclable Multielectron Anolyte for Nonaqueous Redox Flow Batteries. J. Am. Chem. Soc. 2016, 138, 15378–15384. 10.1021/jacs.6b07638. PubMed DOI
Maleev A. A.; Balashova T. V.; Fukin G. K.; Katkova M. A.; Lopatin M. A.; Bochkarev M. N. 1,3-Bis(Alkylimino)Isoindolinates of Rare Earth Metals: Synthesis, Molecular Structure and Photoluminescence. Polyhedron 2010, 29 (1), 10–15. 10.1016/j.poly.2009.05.020. DOI
Edelmann F. T.Recent Progress in the Chemistry of Metal Amidinates and Guanidinates. Advances in Organometallic Chemistry; Elsevier, 2013; pp 55–374.
Collins S. Polymerization Catalysis With Transition Metal Amidinate And Related Complexes. Coord. Chem. Rev. 2011, 255 (1–2), 118–138. 10.1016/j.ccr.2010.07.005. DOI
Edelmann F. T. Lanthanide Amidinates and Guanidinates In Catalysis and Materials Science: A Continuing Success Story. Chem. Soc. Rev. 2012, 41 (23), 7657–7672. 10.1039/c2cs35180c. PubMed DOI
Novotný M.; Švec P.; Růžičková Z.; Růžička A. Structure of Non-Symmetric Lithium Amidinate Complexes Prepared by Addition of Lithium Amides to Various Nitriles. J. Organomet. Chem. 2017, 828, 68–74. 10.1016/j.jorganchem.2016.11.015. DOI
Novotný M.; Švec P.; Růžičková Z.; Růžička A. Direct Access to Non-Symmetric Lithium Nitriloamidinate and Disymmetric Dilithium Bisamidinate Complexes From 1,3- Or 1,4- Dicyanobenzene and Lithium Amides. J. Organomet. Chem. 2017, 849–850, 88–97. 10.1016/j.jorganchem.2017.09.008. DOI
Cissell J. A.; Vaid T. P.; Yap G. P. A. The Doubly Oxidized, Antiaromatic Tetraphenylporphyrin Complex [Li(Tpp)][Bf 4 ]. Org. Lett. 2006, 8 (11), 2401–2404. 10.1021/ol060772l. PubMed DOI
Pyykkö P.; Atsumi M. Molecular Double-Bond Covalent Radii for Elements Li–E112. Chem.—Eur. J. 2009, 15 (46), 12770–12779. 10.1002/chem.200901472. PubMed DOI
Shishkin O. V.; Konovalova I. S.; Hordiyenko O. V.; Leszczynski J.; et al. Remarkably Strong Polarization of Amidine Fragment in the Crystals of 1-Imino-1H-Isoindol-3-Amine. Struct. Chem. 2013, 24 (4), 1089–1097. 10.1007/s11224-012-0131-y. DOI
Zhang Z.-Q.; Njus J. M.; Sandman D. J.; Guo C.; Foxman B. M.; Erk P.; van Gelder R. Diiminoisoindoline: Tautomerism, Conformations, and Polymorphism. Chem. Commun. 2004, (7), 886–887. 10.1039/b400111g. PubMed DOI
Bore J.; Chen W.-Y.; Nemykin V. N.; Ziegler C. J. Imino(Dialkylamino)Isoindolines: Structures and Dynamic Behavior. J. Porphyrins Phthalocyanines 2024, 28 (7), 429–434. 10.1142/S1088424624500317. DOI
Zhang Z.-Q.; Uth S.; Sandman D. J.; Foxman B. M. Structure, Polymorphism and Thermal Properties of Phenyliminoisoindolines. J. Phys. Org. Chem. 2004, 17 (9), 769–776. 10.1002/poc.793. DOI
Gilli G.; Bellucci F.; Ferretti V.; Bertolasi V. Evidence for Resonance-Assisted Hydrogen Bonding from Crystal-Structure Correlations on the Enol Form of the. Beta.-Diketone Fragment. J. Am. Chem. Soc. 1989, 111 (3), 1023–1028. 10.1021/ja00185a035. DOI
Bertolasi V.; Gilli P.; Ferretti V.; Gilli G. Evidence for Resonance-Assisted Hydrogen Bonding. 2. Intercorrelation Between Crystal Structure and Spectroscopic Parameters in Eight Intramolecularly Hydrogen Bonded 1,3-Diaryl-1,3-Propanedione Enols. J. Am. Chem. Soc. 1991, 113 (13), 4917–4925. 10.1021/ja00013a030. DOI
Gilli P.; Bertolasi V.; Ferretti V.; Gilli G. Evidence for Resonance-Assisted Hydrogen Bonding. 4. Covalent Nature of the Strong Homonuclear Hydrogen Bond. Study of the O-H--O System by Crystal Structure Correlation Methods. J. Am. Chem. Soc. 1994, 116 (3), 909–915. 10.1021/ja00082a011. DOI
Homborg H.; Teske C. L. Lithiumphthalocyanine: Darstellung und Charakterisierung der Monoklinen und Tetragonalen Modifikationen Von Lipc(1-) und der Halogenaddukte Lipc(1-)X (X = Cl, Br, I). Z. Anorg. Allg. Chem. 1985, 527 (8), 45–61. 10.1002/zaac.19855270805. DOI
Zanotti G.; Palmeri F.; Raglione V. Phthalocyanines Synthesis: A State-of-the-Art Review of Sustainable Approaches Through Green Chemistry Metrics. Chem.—Eur. J. 2024, 30 (44), e20240090810.1002/chem.202400908. PubMed DOI
Pap J. S.; Kripli B.; Bányai V.; Giorgi M.; Korecz L.; Gajda T.; Árus D.; Kaizer J.; Speier G. Tetra-, Penta- and Hexacoordinate Copper(II) Complexes With N3 Donor Isoindoline-Based Ligands: Characterization and Sod-Like Activity. Inorg. Chim. Acta 2011, 376 (1), 158–169. 10.1016/j.ica.2011.06.001. DOI
Kripli B.; Baráth G.; Balogh-Hergovich É.; Giorgi M.; Simaan A. J.; Párkányi L.; Pap J. S.; Kaizer J.; Speier G. Correlation Between The Sod-Like Activity of Hexacoordinate Iron(II) Complexes and Their Fe3+/Fe2+ Redox Potentials. Inorg. Chem. Commun. 2011, 14 (1), 205–209. 10.1016/j.inoche.2010.10.023. DOI
Pap J. S.; Bányai V.; Szilvási D. S.; Kaizer J.; Speier G.; Giorgi M. Influence of Meridional N3-Ligands on Supramolecular Assembling and Redox Behavior of Carboxylatocopper(II) Complexes. Inorg. Chem. Commun. 2011, 14 (11), 1767–1772. 10.1016/j.inoche.2011.08.005. DOI
Kaizer J.; Kripli B.; Speier G.; Párkányi L. Synthesis, Structure, and Catalase-Like Activity of a Novel Manganese(II) Complex: Dichloro[1,3-Bis(2′-Benzimidazolylimino)Isoindoline]Manganese(II). Polyhedron 2009, 28 (5), 933–936. 10.1016/j.poly.2009.01.008. DOI
Bröring M.; Kleeberg C.; Cónsul Tejero E. Syntheses, Structures and Coordination Modes of Acetatopalladium(II) Complexes With 1,3-Bis(2-Arylimino)Isoindoline Ligands of Different Steric Influence. Eur. J. Inorg. Chem. 2007, 2007 (20), 3208–3216. 10.1002/ejic.200700286. DOI
Bretschneider A.; Andrada D. M.; Dechert S.; Meyer S.; Mata R. A.; Meyer F. Preorganized Anion Traps for Exploiting Anion−Π Interactions: An Experimental and Computational Study. Chem.—Eur. J. 2013, 19 (50), 16988–17000. 10.1002/chem.201302598. PubMed DOI
Kurzer F.; Douraghi-Zadeh K. Advances in the Chemistry of Carbodiimides. Chem. Rev. 1967, 67 (2), 107–152. 10.1021/cr60246a001. PubMed DOI
Alonso-Moreno C.; Antiñolo A.; Carrillo-Hermosilla F.; Otero A. Guanidines: From Classical Approaches yo Efficient Catalytic Syntheses. Chem. Soc. Rev. 2014, 43 (10), 3406–3425. 10.1039/C4CS00013G. PubMed DOI
Koller J.; Bergman R. G. Highly Efficient Aluminum-Catalyzed Hydro-Amination/-Hydrazination of Carbodiimides. Organometallics 2010, 29 (22), 5946–5952. 10.1021/om100735q. DOI
Zhou S.; Wang S.; Yang G.; Li Q.; Zhang L.; Yao Z.; Zhou Z.; Song H.-b. Synthesis, Structure, and Diverse Catalytic Activities of [Ethylenebis(Indenyl)]Lanthanide(III) Amides On N–H and C–H Addition to Carbodiimides and ε-Caprolactone Polymerization. Organometallics 2007, 26 (15), 3755–3761. 10.1021/om070234s. DOI
Shen H.; Chan H.-S.; Xie Z. Guanylation of Amines Catalyzed by a Half-Sandwich Titanacarborane Amide Complex. Organometallics 2006, 25 (23), 5515–5517. 10.1021/om060811x. DOI
Montilla F.; del Río D.; Pastor A.; Galindo A. Use of Vanadium Complexes as Catalysts in the Synthesis of Guanidines: New Experimental Data and DFT Analysis of the Carbodiimide Interaction With the Catalyst. Organometallics 2006, 25 (21), 4996–5002. 10.1021/om060535m. DOI
Gilli P.; Bertolasi V.; Pretto L.; Lyčka A.; Gilli G. The Nature of Solid-State N–H···o/O–H···n Tautomeric Competition in Resonant Systems. Intramolecular Proton Transfer in Low-Barrier Hydrogen Bonds Formed by the ···Oc–Cn–Nh··· ⇄ ···Ho–Cc–Nn··· Ketohydrazone–Azoenol System. A Variable-Temperature X-Ray Crystallographic and DFT Computational Study. J. Am. Chem. Soc. 2002, 124 (45), 13554–13567. 10.1021/ja020589x. PubMed DOI
Pantoş G. D.; Rodríguez-Morgade M. S.; Torres T.; Lynch V. M.; Sessler J. L. 2-Amino-3,4-Diethylpyrrole Derivatives: New Building Blocks for Coiled Structures. Chem. Commun. 2006, (20), 2132–2134. 10.1039/B602956F. PubMed DOI
Huber S. M.; Mata G.; Linden A.; Luedtke N. W. Synthesis and Structure of a Hydrogenated Zinc Hemiporphyrazine. Chem. Commun. 2013, 49 (39), 4280–4282. 10.1039/C2CC37151K. PubMed DOI
Çetin A.; Durfee W. S.; Ziegler C. J. Low-Coordinate Transition-Metal Complexes of a Carbon-Substituted Hemiporphyrazine. Inorg. Chem. 2007, 46 (16), 6239–6241. 10.1021/ic7011099. PubMed DOI
Costa R.; Engle J. T.; Ziegler C. J. The Synthesis and Metal Binding Chemistry of Carbahemiporphyrazines With an Electron Withdrawing Substituent. J. Porphyrins Phthalocyanines 2012, 16 (2), 175–182. 10.1142/S1088424612004835. DOI
Krause L.; Herbst-Irmer R.; Sheldrick G. M.; Stalke D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr. 2015, 48 (1), 3–10. 10.1107/S1600576714022985. PubMed DOI PMC
Sheldrick G. M. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv. 2015, 71 (1), 3–8. 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71 (1), 3–8. 10.1107/S2053229614024218. PubMed DOI PMC
APEX4, v2022.1-1; Bruker-AXS, 2022.
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, revision C.01; Gaussian, Inc.: Wallingford, CT, 2016.
Becke A. D. Density-Functional Thermochemistry. Iii. The Role Of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648–5652. 10.1063/1.464913. DOI
Lee C.; Yang W.; Parr R. G. Development of The Colle-Salvetti Correlation-Energy Formula Into A Functional Of The Electron Density. Phys. Rev. B 1988, 37 (1), 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Barone V.; Cossi M. Quantum Calculation of Molecular Energies And Energy Gradients In Solution By A Conductor Solvent Model. J. Phys. Chem. A 1998, 102 (11), 1995–2001. 10.1021/jp9716997. DOI
Schlegel H. B. Optimization Of Equilibrium Geometries And Transition Structures. J. Comput. Chem. 1982, 3 (2), 214–218. 10.1002/jcc.540030212. DOI
Cossi M.; Rega N.; Scalmani G.; Barone V. Energies, Structures, And Electronic Properties of Molecules In Solution With The C-Pcm Solvation Model. J. Comput. Chem. 2003, 24 (6), 669–681. 10.1002/jcc.10189. PubMed DOI
Peng C.; Ayala P.; Shlegel H.; Frisch M. Using Redundant Internal Coordinates To Optimize Equilibrium Geometries And Transition States. J. Comput. Chem. 1996, 17 (1), 49–56. 10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0. DOI
Peng C.; Bernhard Schlegel H. Combining Synchronous Transit and Quasi-Newton Methods To Find Transition States. Isr. J. Chem. 1993, 33 (4), 449–454. 10.1002/ijch.199300051. DOI
Wolinski K.; Hinton J. F.; Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc. 1990, 112 (23), 8251–8260. 10.1021/ja00179a005. DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A Consistent And Accurate Ab Initio Parametrization Of Density Functional Dispersion Correction (Dft-D) For The 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 15410410.1063/1.3382344. PubMed DOI