• This record comes from PubMed

Modeling and simulation of blood flow in unhealthy elliptic arteries with computational fluid dynamics approach

. 2025 ; 20 (4) : e0317989. [epub] 20250408

Language English Country United States Media electronic-ecollection

Document type Journal Article

This study investigates the influence of varying degrees of stenosis on blood flow within elliptic arteries, emphasizing the critical role of artery shape in clinical evaluations as opposed to the commonly studied circular arteries. Unlike prior work, this research offers a precise definition of stenosis by incorporating the measured length, height, and position of the narrowing. Employing the non-Newtonian Williamson fluid model, we conducted comprehensive numerical simulations to examine blood flow through four distinct stenosis formations. The novelty of this work lies in its accurate modeling of stenosis and use of advanced mesh generation, combined with commercial software and the finite volume method, to capture detailed hemodynamic behavior. Visualized results, including pressure profiles, velocity line graphs, and streamlines, further underscore the distinctive flow dynamics shaped by the elliptic geometry. Key findings of the obtained results reveal that blood velocity peaks near the stenosis and drops significantly post-stenosis, with notable variations in flow patterns, energy loss, and pressure distribution across different stenosis types. Further, higher velocity of blood flow is observed in elliptic arteries in comparison with circular ones. In the area of the high corners of stenotic segments, the pressure profile reaches high values. As a result of the narrowing of the arterial cross-section, the varied time shows that the post-stenotic segment of the artery has a higher pressure than the pre-stenotic section. The varied time suggests that an axially symmetric profile will eventually be the norm for the flow within the arterial portion. These insights have profound implications for improving clinical diagnosis and treatment strategies for conditions related to stenosed elliptic arteries.

See more in PubMed

Lomax H, Pulliam TH, Zingg DW, Kowalewski TA. Fundamentals of computational fluid dynamics. Appl Mech Rev. 2002;55(4):B61.

Coppola G, Capuano F, de Luca L. Discrete energy-conservation properties in the numerical simulation of the Navier–Stokes equations. Appl Mech Rev. 2019:71(1);010803.

Tey WY, Asako Y, Sidik NAC, Goh RZ. Governing equations in computational fluid dynamics: derivations and a recent review. Prog Energy Environ. 2017;1:1–19.

Williams PT, Baker AJ. Incompressible computational fluid dynamics and the continuity constraint method for the three-dimensional navier-stokes equations. Numer Heat Transf Part B: Fundament 1996;29(2):137–273. doi: 10.1080/10407799608914980 DOI

Badcock KJ, Richards BE, Woodgate MA. Elements of computational fluid dynamics on block structured grids using implicit solvers. Prog Aerosp Sci. 2000;36(5–6):351–92. doi: 10.1016/s0376-0421(00)00005-1 DOI

Young DP, Melvin RG, Bieterman MB, Johnson FT, Samant SS, Bussoletti JE. A locally refined rectangular grid finite element method: application to computational fluid dynamics and computational physics. J Comput Phys 1991;92(1):1–66. doi: 10.1016/0021-9991(91)90291-r DOI

Martins NMC, Carriço NJG, Ramos HM, Covas DIC. Velocity-distribution in pressurized pipe flow using CFD: accuracy and mesh analysis. Comput Fluids. 2014;105:218–30. doi: 10.1016/j.compfluid.2014.09.031 DOI

Knoerzer K, Juliano P, Gladman S, Versteeg C, Fryer PJ. A computational model for temperature and sterility distributions in a pilot‐scale high‐pressure high‐temperature process. AIChE J 2007;53(11):2996–3010. doi: 10.1002/aic.11301 DOI

Khanafer K, Bull JL, Pop I, Berguer R. Influence of pulsatile blood flow and heating scheme on the temperature distribution during hyperthermia treatment. Int J Heat Mass Transf. 2007;50(23–24):4883–90. doi: 10.1016/j.ijheatmasstransfer.2007.01.062 DOI

Mani M, Dorgan AJ. A perspective on the state of aerospace computational fluid dynamics technology. Annu Rev Fluid Mech 2023;55(1):431–57. doi: 10.1146/annurev-fluid-120720-124800 DOI

Lee B-K. Computational fluid dynamics in cardiovascular disease. Korean Circ J 2011;41(8):423–30. doi: 10.4070/kcj.2011.41.8.423 PubMed DOI PMC

Gunatilaka CC, Schuh A, Higano NS, Woods JC, Bates AJ. The effect of airway motion and breathing phase during imaging on CFD simulations of respiratory airflow. Comput Biol Med. 2020;127:104099. doi: 10.1016/j.compbiomed.2020.104099 PubMed DOI PMC

Yousefi M, Safikhani H, Jabbari E, Tahmsbi V. Numerical modeling and optimization of respirational emergency drug delivery device using computational fluid dynamics and response surface method. Int J Eng. 2021;34(2):547–55.

Bah MT, Nair PB, Browne M. Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements. Med Eng Phys 2009;31(10):1235–43. doi: 10.1016/j.medengphy.2009.08.001 PubMed DOI

Puentener P, Schuck M, Kolar JW. CFD assisted evaluation of in vitro experiments on bearingless blood pumps. IEEE Trans Biomed Eng 2021;68(4):1370–8. doi: 10.1109/TBME.2020.3030316 PubMed DOI

Botar CC, Vasile T, Sfrangeu S, Clichici S, Agachi PS, Badea R, et al. CFD simulation of the portal vein blood flow. In: Proceedings of the International Conference on Advancements of Medicine and Health Care through Technology. 2009. p. 359–62.

Linninger AA, Xenos M, Zhu DC, Somayaji MR, Kondapalli S, Penn RD. Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans Biomed Eng 2007;54(2):291–302. doi: 10.1109/TBME.2006.886853 PubMed DOI

Schooneveldt G, Kok HP, Bakker A, Geijsen ED, Rasch CRN, Rosette JJMCH de la, et al.. Clinical validation of a novel thermophysical bladder model designed to improve the accuracy of hyperthermia treatment planning in the pelvic region. Int J Hyperthermia 2018;35(1):383–97. doi: 10.1080/02656736.2018.1506164 PubMed DOI

Bottan S, Poulikakos D, Kurtcuoglu V. Phantom model of physiologic intracranial pressure and cerebrospinal fluid dynamics. IEEE Trans Biomed Eng 2012;59(6):1532–8. doi: 10.1109/TBME.2012.2187448 PubMed DOI

Dong R. Quantitative analysis of hemodynamic state and muscle atrophy of residual limb after trans-femoral amputation. 2018.

Lopes D, Agujetas R, Puga H, Teixeira J, Lima R, Alejo JP, et al.. Analysis of finite element and finite volume methods for fluid-structure interaction simulation of blood flow in a real stenosed artery. Int J Mech Sci. 2021;207:106650. doi: 10.1016/j.ijmecsci.2021.106650 DOI

Cheng RT. Numerical solution of the Navier-Stokes equations by the finite element method. Phys Fluids 1972;15(12):2098–105. doi: 10.1063/1.1693841 DOI

Morris PD, Silva Soto DA, Feher JF, Rafiroiu D, Lungu A, Varma S, et al.. Fast virtual fractional flow reserve based upon steady-state computational fluid dynamics analysis: results from the VIRTU-Fast study. Basic Transl Sci. 2017;2(4):434–46. PubMed PMC

Dona AC, Coffey S, Figtree G. Translational and emerging clinical applications of metabolomics in cardiovascular disease diagnosis and treatment. Eur J Prev Cardiol 2016;23(15):1578–89. doi: 10.1177/2047487316645469 PubMed DOI

Hatle L, Angelsen BA, Tromsdal A. Non-invasive estimation of pulmonary artery systolic pressure with Doppler ultrasound. Br Heart J 1981;45(2):157–65. doi: 10.1136/hrt.45.2.157 PubMed DOI PMC

Hagspiel KD, Flors L, Hanley M, Norton PT. Computed tomography angiography and magnetic resonance angiography imaging of the mesenteric vasculature. Tech Vasc Interv Radiol 2015;18(1):2–13. doi: 10.1053/j.tvir.2014.12.002 PubMed DOI

Vasbinder GBC, Nelemans PJ, Kessels AGH, Kroon AA, Maki JH, Leiner T, et al. Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med. 2004;141(9):674–82; discussion 682. doi: 10.7326/0003-4819-141-9-200411020-00007 PubMed DOI

Savage MP, Douglas JS Jr, Fischman DL, Pepine CJ, King SB 3rd, Werner JA, et al.. Stent placement compared with balloon angioplasty for obstructed coronary bypass grafts. Saphenous Vein De Novo Trial Investigators. N Engl J Med 1997;337(11):740–7. doi: 10.1056/NEJM199709113371103 PubMed DOI

Majeed AH, Liu D, Refaie Ali A, Alotaibi H, Yin ZJ, Yi RH. Numerical simulations of energy storage performance in a close configuration: a Galerkin finite element-based computation. Alexandria Eng J. 2024;104:56–65. doi: 10.1016/j.aej.2024.06.037 DOI

Majeed AH, Siddique I, Mehmood A, Ghazwani HA, Manzoor S, Ahmad S. Finite element simulations of Herschel–Bulkley visco-plastic materials over a cylinder: drag and lift correlation analysis. Mod Phys Lett B 2024;38(26):2450248. doi: 10.1142/s0217984924502488 DOI

Mahmood R, Majeed AH, Mehmood A, Siddique I. Numerical study of hydrodynamic forces of nonlinear fluid flow in a channel-driven cavity: finite element-based simulation. Int J Mod Phys B. 2024:38(15);2450184.

Majeed AH, Mahmood R, Liu D. Finite element simulations of double diffusion in a staggered cavity filled with a power-law fluid. Phys Fluids. 2024;36(3). doi: 10.1063/5.0189237 DOI

Majeed AH, Mahmood R, Liu D, Ali MR, Hendy AS, Zhao B, et al.. Flow and heat transfer analysis over a pair of heated bluff bodies in a channel: characteristics of non-linear rheological models. Case Stud Thermal Eng. 2024;53:103827. doi: 10.1016/j.csite.2023.103827 DOI

Chakravarty S, Sen S. Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries. Korea-Australia Rheol J. 2005;17(2):47–62.

Rangaswami J, Mathew RO, Parasuraman R, Tantisattamo E, Lubetzky M, Rao S, et al.. Cardiovascular disease in the kidney transplant recipient: epidemiology, diagnosis and management strategies. Nephrol Dial Transplant 2019;34(5):760–73. doi: 10.1093/ndt/gfz053 PubMed DOI

Nadeem S, Akhtar S, Saleem A, Akkurt N, Ali Ghazwani H, Eldin SM. Numerical computations of blood flow through stenosed arteries via CFD tool OpenFOAM. Alexandria Eng J. 2023;69:613–37. doi: 10.1016/j.aej.2023.02.005 DOI

Elhanafy A, Elsaid A, Guaily A. Numerical investigation of hematocrit variation effect on blood flow in an arterial segment with variable stenosis degree. J Molecul Liquids. 2020;313:113550. doi: 10.1016/j.molliq.2020.113550 DOI

Yan S-R, Zarringhalam M, Toghraie D, Foong LK, Talebizadehsardari P. Numerical investigation of non-Newtonian blood flow within an artery with cone shape of stenosis in various stenosis angles. Comput Methods Programs Biomed. 2020;192:105434. doi: 10.1016/j.cmpb.2020.105434 PubMed DOI

Tripathi J, Vasu B, Bég OA. Computational simulations of hybrid mediated nano-hemodynamics (Ag-Au/Blood) through an irregular symmetric stenosis. Comput Biol Med. 2021;130104213. doi: 10.1016/j.compbiomed.2021.104213 PubMed DOI

Siddiqa S, Naqvi SB, Hossain MA. Numerical solutions of locally magnetized blood flow in the vessel filled with the porous medium. Int J Mech Sci. 2019;157–158:668–76. doi: 10.1016/j.ijmecsci.2019.04.037 DOI

Carvalho V, Lopes D, Silva J, Puga H, Lima RA, Teixeira JC, et al. Comparison of CFD and FSI simulations of blood flow in stenotic coronary arteries. Applications of Computational Fluid Dynamics Simulation and Modeling. IntechOpen; 2022.

Akhtar S, Hussain Z, Nadeem S, Najjar IMR, Sadoun AM. CFD analysis on blood flow inside a symmetric stenosed artery: physiology of a coronary artery disease. Sci Prog 2023;106(2):368504231180092. doi: 10.1177/00368504231180092 PubMed DOI PMC

Salahuddin T, Malik MY, Hussain A, Bilal S, Awais M. MHD flow of Cattanneo–Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: using numerical approach. J Magnetism Magnet Mater. 2016;401:991–7. doi: 10.1016/j.jmmm.2015.11.022 DOI

Nadeem S, Hussain ST. Flow and heat transfer analysis of Williamson nanofluid. Appl Nanosci 2013;4(8):1005–12. doi: 10.1007/s13204-013-0282-1 DOI

Jamali MSA, Ismail Z, Amin NS. Effect of different types of stenosis on generalized power law model of blood flow in a bifurcated artery. ARFMTS 2021;87(3):172–83. doi: 10.37934/arfmts.87.3.172183 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...