Genetic and morphological variation in the genus Zygogonium (Zygnematophyceae, Charophyta) from localities in Europe and North America and description of Z. angustum, sp. nov
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Fulbright Austria
10.55776/P34181
Austrian Science Fund
I 1951-B16
Austrian Science Fund
PubMed
40203186
PubMed Central
PMC12168101
DOI
10.1111/jpy.70012
Knihovny.cz E-zdroje
- Klíčová slova
- Charophyta, Conjugatophyceae, atpB, conjugating green algae, phylogeny, plant terrestrialization, psbC, rbcL, streptophyte, ultrastructure,
- MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
The globally distributed genus Zygogonium exhibits a narrow environmental range, with 19 morphologically described species. Its molecular characterization is poor, based on a single accession of the type species Z. ericetorum from Austria. We examined the genetic variability, morphology, and ultrastructure of field-collected Zygogonium material from different sampling sites in Austria, Norway, Ireland, Scotland, and the United States. Phylogenetic analysis based on partial sequences of the psbC gene distinguished three well-supported groups and one subgroup. AtpB gene sequences collected from a subset of samples also support this result, while rbcL gene data provided lower support. Group 1A contained the type species Z. ericetorum from Obergurgl/Austria and samples from Kühtai/Austria, Norway, and Scotland. The morphology was characterized by wide vegetative filaments (15-31 μm) and the occurrence of aplanospores with purple residue. Group 1B contained Z. cf. ericetorum from Ireland and Ellmau/Austria. Filaments were in a similar size range (12-30 μm) as in group 1A. This group had round unusual akinetes with green or purple content, had one or two chloroplasts, and was surrounded by a thick cell wall; no aplanospores were observed. Group 2 collected from Ireland had narrower filaments (8-12 μm), cells up to six times longer than wide, and contained elongated aplanospores. Therefore, we have described a new species Z. angustum sp. nov. Group 3 contained Z. cf. ericetorum from Norway and the United States, represented by vegetative filaments with an intermediate width (13-20 μm), but no other distinct morphological features. The morphological and genetic variability observed in Zygogonium is possibly related to habitat and ecology.
Academy of Natural Sciences of Drexel University Philadelphia Pennsylvania USA
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Botany University of Innsbruck Innsbruck Austria
Department of Ecology and Environmental Biology University of Connecticut Storrs Connecticut USA
Department of Environmental Science and Policy George Mason University Fairfax Virginia USA
Zobrazit více v PubMed
Aigner, A. , Holzinger, A. , Karsten, U. , & Kranner, I. (2017). The freshwater red alga PubMed DOI PMC
Aigner, S. , Remias, D. , Karsten, U. , & Holzinger, A. (2013). Unusual phenolic compounds contribute to ecophysiological performance in the purple‐colored green alga PubMed DOI PMC
Busch, A. , Gerbracht, J. V. , Davies, K. , Hoecker, U. , & Hess, S. (2024). Comparative transcriptomics illuminates the cellular responses of an aeroterrestrial zygnematophyte to UV radiation. Journal of Experimental Botany, 75, 3624–3642. 10.1093/jxb/erae131 PubMed DOI PMC
Busch, A. , & Hess, S. (2022a). A diverse group of underappreciated Zygnematophytes deserves in‐depth exploration. Applied Phycology, 3, 306–323. 10.1080/26388081.2022.2081819 DOI
Busch, A. , & Hess, S. (2022b). Sunscreen mucilage: A photoprotective adaptation found in terrestrial green algae (Zygnematophyceae). European Journal of Phycology, 57, 107–124. 10.1080/09670262.2021.1898677 DOI
Busch, A. , Slominski, E. , Remias, D. , Procházková, L. , & Hess, S. (2024). A mesophilic relative of common glacier algae, PubMed DOI
Cheng, S. , Xian, W. , Fu, Y. , Marin, B. , Keller, J. , Wu, T. , Sun, W. , Li, X. , Xu, Y. , Zhang, Y. , Wittek, S. , Reder, T. , Günther, G. , Gontcharov, A. , Wang, S. , Li, L. , Liu, X. , Wang, J. , Yang, H. , … Melkonian, M. (2019). Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell, 179(5), 1057–1067. 10.1016/j.cell.2019.10.019 PubMed DOI
de Vries, J. , Curtis, B. A. , Gould, S. B. , & Archibald, J. M. (2018). Embryophyte stress signaling evolved in the algal progenitors of land plants. Proceedings of the National Academy of Sciences of the United States of America, 115, E3471–E3480. 10.1073/pnas.1719230115 PubMed DOI PMC
Feng, X. , Zheng, J. , Irisarri, I. , Yu, H. , Zheng, B. , Ali, Z. , de Vries, S. , Keller, J. , Fürst‐Jansen, J. M. R. , Dadras, A. , Zegers, J. M. S. , Rieseberg, T. P. , Dhabalia Ashok, A. , Darienko, T. , Bierenbroodspot, M. J. , Gramzow, L. , Petroll, R. , Haas, F. B. , Fernandez‐Pozo, N. , … Yin, Y. (2024). Genomes of multicellular algal sisters to land plants illuminate signaling network evolution. Nature Genetics, 56(5), 1018–1031. 10.1038/s41588-024-01737-3 PubMed DOI PMC
Fritsch, F. E. (1916). The morphology and ecology of an extreme terrestrial form of
Fritsch, F. E. , & Haines, F. M. (1923). The moisture relations of terrestrial algae. II. The changes during exposure to drought and treatment with hypertonic solutions. Annals of Botany, 37, 683–728. 10.1093/oxfordjournals.aob.a089874 DOI
Gau, B. (1934). Beiträge zur Morphologie und Biologie von Zygogonium ericetorum ‐[Doctoral dissertation, Albertus‐Universität Königsberg].
Guiry, M. D. , & Guiry, G. M. (2024, continuously updated). AlgaeBase. World‐wide electronic publication, National University of Ireland, Galway . http://www.algaebase.org
Hall, J. , Karol, K. G. , McCourt, R. M. , & Delwiche, C. F. (2008). Phylogeny of the conjugating green algae based on chloroplast and mitochondrial nucleotide sequence data. Journal of Phycology, 44, 467–477. 10.1111/j.1529-8817.2008.00485.x PubMed DOI
Herburger, K. , Remias, D. , & Holzinger, A. (2016). The green alga PubMed DOI PMC
Hess, S. , Williams, S. K. , Busch, A. , Irisarri, I. , Delwiche, C. F. , de Vries, S. , Darienko, T. , Roger, A. J. , Archibald, J. M. , Buschmann, H. , von Schwartzenberg, K. , & de Vries, J. (2022). A phylogenomically informed five‐order system for the closest relatives of land plants. Current Biology, 32, 4473–4482.e7. 10.1016/j.cub.2022.08.022 PubMed DOI PMC
Holzinger, A. , Roleda, M. Y. , & Lützk, C. (2009). The vegetative arctic green alga PubMed DOI
Holzinger, A. , Tschaikner, A. , & Remias, D. (2010). Cytoarchitecture of the desiccation‐tolerant green alga PubMed DOI
Hoppert, M. , Reimer, R. , Kemmling, A. , Schröder, A. , Günzl, B. , & Heinken, T. (2004). Structure and reactivity of a biological soil crust from axeric sandy soil in central Europe. Geomicrobiology Journal, 21, 183–191. 10.1080/01490450490275433 DOI
Huelsenbeck, J. P. , & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755. 10.1093/bioinformatics/17.8.754 PubMed DOI
Jiao, C. , Sørensen, I. , Sun, X. , Sun, H. , Behar, H. , Alseekh, S. , Philippe, G. , Palacio Lopez, K. , Sun, L. , Reed, R. , Jeon, S. , Kiyonami, R. , Zhang, S. , Fernie, A. R. , Brumer, H. , Domozych, D. S. , Fei, Z. , & Rose, J. K. C. (2020). The PubMed DOI
John, D. M. , & Williamson, D. B. (2009). A practical guide to the desmids of the west of Ireland. Gantner Verlag.
Kadlubowska, J. Z. (1984). Conjugatophyceae I. Chlorophyta VIII. Zygnemales. In Ettl H., Gerloff J., Heynig H., & Mollenhauer D. (Eds.), Süßwasserflora von Mitteleuropa, Band (Vol. 16). Springer Spektrum.
Kirchner, O. (1878). Algen. In Cohn F. (Ed.), Kryptogamen‐Flora von Schlesien. Part 1 (Vol. 2, 1. Hälfte, pp. 1–284). J.U. Kern's Verlag.
Kleeberg, A. , Schubert, H. , Koschorreck, M. , & Nixdorf, B. (2006). Abundance and primary production of filamentous green algae DOI
Kützing, F. T. (1843). Phycologia generalis oder Anatomie, Physiologie und Systemkunde der Tange. Mit 80 farbig gedruckten Tafeln, gezeichnet und graviert vom Verfasser. pp. [part 1]: [i]‐ii, [1] 142, [part 2:] 143‐458, 1, err., pls 1‐80 (p. 668). F.A. Brockhaus.
Kützing, F. T. (1849). Species algarum. F. A. Brockhaus. 10.5962/bhl.title.60464 DOI
One Thousand Plant Transcriptomes Initiative . (2019). One thousand plant transcriptomes and the phylogenomics of green plants. Nature, 574, 679–685. 10.1038/s41586-019-1693-2 PubMed DOI PMC
Lynn, R. , & Brock, T. D. (1969). Notes on the ecology of a species of PubMed DOI
Newsome, A. G. , Murphy, B. T. , & van Breemen, R. B. (2013). Isolation and characterization of natural blue pigments from underexplored sources. Physical Methods in Food Analysis, 1138, 105–125. 10.1021/bk-2013-1138.ch008 DOI
Newsome, A. G. , & van Breemen, R. B. (2012). Characterization of the purple vacuolar pigment of DOI
Nichols, H. W. , & Bold, H. C. (1965).
Peréz, W. , Hall, J. D. , McCourt, R. M. , & Karol, K. G. (2014). Phylogeny of North American PubMed DOI
Peter, E. , Jaeger, C. , Lisec, J. , Peters, R. , Mourot, R. , Rossel, P. , Tranter, M. , Anesio, A. , & Benning, L. (2024). Endometabolic profiling of pigmented glacier ice algae: The impact of sample processing. Metabolomics, 20, 98. 10.1007/s11306-024-02147-6 PubMed DOI PMC
Pichrtová, M. , Holzinger, A. , Kulichová, J. , Ryšánek, D. , Šoljaková, T. , Trumhová, K. , & Němcová, Y. (2018). Molecular and morphological diversity of PubMed DOI PMC
Remias, D. , Holzinger, A. , Aigner, S. , & Lütz, C. (2012). Ecophysiology and ultrastructure of DOI
Remias, D. , & Procházková, L. (2023). The first cultivation of the glacier ice alga DOI
Rundina, L. A. (1998). The Zygnematales of Russia (Chlorophyta: Zygnematophyceae, Zygnematales) (p. 346). Nauka. [in Russian]
Sekimoto, H. , Komiya, A. , Tsuyuki, N. , Kawai, J. , Kanda, N. , Ootsuki, R. , Suzuki, Y. , Toyoda, A. , Fujiyama, A. , Kasahara, M. , Abe, J. , Tsuchikane, Y. , & Nishiyama, T. (2023). A divergent RWP‐RK transcription factor determines mating type in heterothallic PubMed DOI
Stancheva, R. , Hall, J. D. , Herburger, K. , Lewis, L. A. , McCourt, R. M. , Sheath, R. G. , & Holzinger, A. (2014). Phylogenetic position of PubMed DOI PMC
Stancheva, R. , Hall, J. D. , McCourt, R. M. , & Sheath, R. G. (2013). Identity and phylogenetic placement of PubMed DOI
Stancheva, R. , Herburger, K. , Sheath, R. G. , & Holzinger, A. (2016). Conjugation morphology of PubMed DOI PMC
Stancheva, R. , Sheath, R. G. , & Hall, J. D. (2012). Systematics of the genus PubMed DOI
Taft, C. E. (1944). New species of Zygnemataceae. Ohio Journal of Science, 44, 238.
Transeau, E. N. (1933). The genus
Transeau, E. N. (1951). The Zygnemataceae (fresh water conjugate algae). The Ohio State University Press.
West, G. S. , & Fritsch, F. E. (1927). A treatise on the British freshwater algae in which are included all the pigmented Protophyta hitherto found in British freshwaters . Cambridge University Press.
West, G. S. , & Starkey, G. B. (1915). A contribution to the cytology and life‐history of DOI
West, W. , & West, G. S. (1904). A monograph of the British Desmidiaceae. I. The Ray Society.
Wodniok, S. , Brinkmann, H. , Glöckner, G. , Heidel, A. J. , Philippe, H. , Melkonian, M. , & Becker, B. (2011). Origin of land plants: Do conjugating green algae hold the key? BMC Evolutionary Biology, 11(1), 104. 10.1186/1471-2148-11-104 PubMed DOI PMC