Remote, Smart Device-Based Cardiac Rehabilitation After Myocardial Infarction: A Pilot, Randomized Cross-Over SmartRehab Study

. 2024 Sep ; 2 (3) : 352-360. [epub] 20240620

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40206122
Odkazy

PubMed 40206122
PubMed Central PMC11975814
DOI 10.1016/j.mcpdig.2024.06.001
PII: S2949-7612(24)00062-2
Knihovny.cz E-zdroje

OBJECTIVE: To evaluate the effect of smart device-based telerehabilitation on Vo2peak in patients after myocardial infarction. PATIENTS AND METHODS: This was a pilot, single-center, randomized, cross-over study with a 3-month intervention. One month after myocardial infarction, patients had cardiopulmonary exercise testing and a 6-minute walking test (6MWT) and were randomly assigned 1:1. In the intervention group, patients received a smartwatch to track the recommended number of steps, which was individualized and derived from the 6MWT. A study nurse telemonitored adherence to the recommended number of steps a day. In the control group, 150 minutes a week of moderate-intensity physical activity was recommended. After 3 months study arms were crossed over, and study procedures were repeated after 3 months. RESULTS: Between June 1, 2019, and February 28, 2023, 64 patients were randomized, of which 61 (aged 51±10 years, 10% women) completed the study. Overall, the smart device-based telerehabilitation led to 2.31 mL/kg/min (95% CI, 1.25-3.37; P<.001) Vo2peak increase compared with the control treatment. Furthermore, there was a significant effect on weight (-1.50 kg; 95% CI, -0.39 to -2.70), whereas the effect on the 6MWT distance (4.7 m; 95% CI, -11.8 to 21.1) or Kansas City Quality of Life questionnaire score (0.98; 95% CI, -1.38 to 3.35) was not significant. CONCLUSION: Smart device-based cardiac rehabilitation may be a promising alternative for patients unable or unwilling to attend in-person cardiac rehabilitation. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT03926312.

Zobrazit více v PubMed

Anderson L., Oldridge N., Thompson D.R., et al. Exercise-based cardiac rehabilitation for coronary heart disease: cochrane systematic review and meta-analysis. J Am Coll Cardiol. 2016;67(1):1–12. doi: 10.1016/j.jacc.2015.10.044. PubMed DOI

Dibben G.O., Faulkner J., Oldridge N., et al. Exercise-based cardiac rehabilitation for coronary heart disease: a meta-analysis. Eur Heart J. 2023;44(6):452–469. doi: 10.1093/eurheartj/ehac747. PubMed DOI PMC

Kokkinos P., Faselis C., Samuel I.B.H., et al. Changes in cardiorespiratory fitness and survival in patients with or without cardiovascular disease. J Am Coll Cardiol. 2023;81(12):1137–1147. doi: 10.1016/j.jacc.2023.01.027. PubMed DOI

Thomas R.J., Balady G., Banka G., et al. 2018 ACC/AHA Clinical Performance and Quality Measures for Cardiac Rehabilitation: a report of the American College of Cardiology/American Heart Association task force on performance measures. J Am Coll Cardiol. 2018;71(16):1814–1837. doi: 10.1016/j.jacc.2018.01.004. PubMed DOI

Collet J.P., Thiele H., Barbato E., et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC) Eur Heart J. 2021;42(14):1289–1367. doi: 10.1093/eurheartj/ehaa575. PubMed DOI

Duncan M.S., Robbins N.N., Wernke S.A., et al. Geographic variation in access to cardiac rehabilitation. J Am Coll Cardiol. 2023;81(11):1049–1060. doi: 10.1016/j.jacc.2023.01.016. PubMed DOI PMC

Turk-Adawi K., Supervia M., Lopez-Jimenez F., et al. Cardiac rehabilitation availability and density around the globe. EClinicalMedicine. 2019;13:31–45. doi: 10.1016/j.eclinm.2019.06.007. PubMed DOI PMC

Ades P.A., Keteyian S.J., Wright J.S., et al. Increasing cardiac rehabilitation participation from 20% to 70%: a road map from the Million Hearts Cardiac Rehabilitation Collaborative. Mayo Clin Proc. 2017;92(2):234–242. doi: 10.1016/j.mayocp.2016.10.014. PubMed DOI PMC

Pack Q.R., Squires R.W., Lopez-Jimenez F., et al. The current and potential capacity for cardiac rehabilitation utilization in the United States. J Cardiopulm Rehabil Prev. 2014;34(5):318–326. doi: 10.1097/HCR.0000000000000076. PubMed DOI

Turk-Adawi K., Supervia M., Ghisi G., et al. The impact of ICCPR’s Global Audit of Cardiac Rehabilitation: where are we now and where do we need to go? EClinicalMedicine. 2023;61 doi: 10.1016/j.eclinm.2023.102092. PubMed DOI PMC

Golbus J.R., Lopez-Jimenez F., Barac A., et al. Digital technologies in cardiac rehabilitation: a science advisory from the American Heart Association. Circulation. 2023;148(1):95–107. doi: 10.1161/CIR.0000000000001150. PubMed DOI

Stens N.A., Bakker E.A., Mañas A., et al. Relationship of daily step counts to all-cause mortality and cardiovascular events. J Am Coll Cardiol. 2023;82(15):1483–1494. doi: 10.1016/j.jacc.2023.07.029. PubMed DOI

Visseren F.L.J., Mach F., Smulders Y.M., et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227–3337. doi: 10.1093/eurheartj/ehab484. PubMed DOI

Mueller S., Winzer E.B., Duvinage A., et al. Effect of high-intensity interval training, moderate continuous training, or guideline-based physical activity advice on peak oxygen consumption in patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2021;325(6):542–551. doi: 10.1001/jama.2020.26812. PubMed DOI PMC

Prescott E., Eser P., Mikkelsen N., et al. Cardiac rehabilitation of elderly patients in eight rehabilitation units in Western Europe: outcome data from the EU-CaRE multi-centre observational study. Eur J Prev Cardiol. 2020;27(16):1716–1729. doi: 10.1177/2047487320903869. PubMed DOI

Keteyian S.J., Brawner C.A., Ehrman J.K., Ivanhoe R., Boehmer J.P., Abraham W.T., et al. Reproducibility of peak oxygen uptake and other cardiopulmonary exercise parameters: implications for clinical trials and clinical practice. Chest. 2010;138(4):950–955. doi: 10.1378/chest.09-2624. PubMed DOI

Imboden M.T., Harber M.P., Whaley M.H., et al. The association between the change in directly measured cardiorespiratory fitness across time and mortality risk. Prog Cardiovasc Dis. 2019;62(2):157–162. doi: 10.1016/j.pcad.2018.12.003. PubMed DOI

Chacko L., P Howard J., Rajkumar C., et al. Effects of percutaneous coronary intervention on death and myocardial infarction stratified by stable and unstable coronary artery disease: a meta-analysis of randomized controlled trials. Circ Cardiovasc Qual Outcomes. 2020;13(2) doi: 10.1161/CIRCOUTCOMES.119.006363. PubMed DOI PMC

Swain D.P. Moderate or vigorous intensity exercise: which is better for improving aerobic fitness? Prev Cardiol. 2005;8(1):55–58. doi: 10.1111/j.1520-037x.2005.02791.x. PubMed DOI

Milanović Z., Sporiš G., Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: a systematic review and meta-analysis of controlled trials. Sports Med. 2015;45(10):1469–1481. doi: 10.1007/s40279-015-0365-0. PubMed DOI

Ellingsen Ø., Halle M., Conraads V., et al. High-intensity interval training in patients with heart failure with reduced ejection fraction. Circulation. 2017;135(9):839–849. doi: 10.1161/CIRCULATIONAHA.116.022924. PubMed DOI PMC

Fell J., Dale V., Doherty P. Does the timing of cardiac rehabilitation impact fitness outcomes? An observational analysis. Open Heart. 2016;3(1) doi: 10.1136/openhrt-2015-000369. PubMed DOI PMC

Johnson D.A., Sacrinty M.T., Gomadam P.S., et al. Effect of early enrollment on outcomes in cardiac rehabilitation. Am J Cardiol. 2014;114(12):1908–1911. doi: 10.1016/j.amjcard.2014.09.036. PubMed DOI

Zobrazit více v PubMed

ClinicalTrials.gov
NCT03926312

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...