Genetic modulation of rare earth nanoparticle biotransformation shapes biological outcomes

. 2025 Apr 11 ; 16 (1) : 3429. [epub] 20250411

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40210885
Odkazy

PubMed 40210885
PubMed Central PMC11985947
DOI 10.1038/s41467-025-58520-z
PII: 10.1038/s41467-025-58520-z
Knihovny.cz E-zdroje

The biotransformation of nanoparticles plays a crucial role in determining their biological fate and responses. Although a few engineering strategies (e.g., surface functionalization and shape control) have been employed to regulate the fate of nanoparticles, the genetic control of nanoparticle biotransformation remains an unexplored avenue. Herein, we utilized a CRISPR-based genome-scale knockout approach to identify genes involved in the biotransformation of rare earth oxide (REO) nanoparticles. We found that the biotransformation of REOs in lysosomes could be genetically controlled via SMPD1. Specifically, suppression of SMPD1 inhibited the transformation of La2O3 into sea urchin-shaped structures, thereby protecting against lysosomal damage, proinflammatory cytokine release, pyroptosis and RE-induced pneumoconiosis. Overall, our study provides insight into how to control the biological fate of nanomaterials.

Zobrazit více v PubMed

Palika, A. et al. An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles. Nat. Nanotechnol.16, 918–925 (2021). PubMed

Cai, X. et al. Molecular mechanisms, characterization methods, and utilities of nanoparticle biotransformation in nanosafety assessments. Small16, 1907663 (2020). PubMed

Gao, J. et al. Determining the cytotoxicity of rare earth element nanoparticles in macrophages and the involvement of membrane damage. Environ. Sci. Technol.51, 13938–13948 (2017). PubMed

Borkowska, M. et al. Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells. Nat. Nanotechnol.15, 331–341 (2020). PubMed

Mosquera, J., Garcia, I. & Liz-Marzan, L. M. Cellular uptake of nanoparticles versus small molecules: a matter of size. Acc. Chem. Res.51, 2305–2313 (2018). PubMed

Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol.11, 977–985 (2016). PubMed PMC

Li, R. et al. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. Acs Nano8, 1771–1783 (2014). PubMed PMC

Cao, M. et al. Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nat. Nanotechnol.16, 708–716 (2021). PubMed

Malysheva, A., Ivask, A., Doolette, C. L., Voelcker, N. H. & Lombi, E. Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. Nat. Nanotechnol.16, 926–932 (2021). PubMed

Dordevic, L., Arcudi, F., Cacioppo, M. & Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol.17, 112–130 (2022). PubMed

Cai, R. et al. Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism. Proc. Natl. Acad. Sci. USA119, e2200363119 (2022). PubMed PMC

Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater.8, 543–557 (2009). PubMed

Leong, H. S. et al. On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechnol.14, 629–635 (2019). PubMed PMC

Oh, E. et al. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechnol.11, 479–486 (2016). PubMed

Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mrna delivery by selective organ targeting nanoparticles. Proc. Natl. Acad. Sci. USA118, e2109256118 (2021). PubMed PMC

Wang, Z. et al. Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothecin bilayers for safe and synergistic cancer immunochemotherapy. Nat. Nanotechnol.16, 1130–1140 (2021). PubMed PMC

Liu, M. D. et al. A transistor-like Ph-sensitive nanodetergent for selective cancer therapy. Nat. Nanotechnol.17, 541–551 (2022). PubMed

Spurgeon, D. J., Lahive, E. & Schultz, C. L. Nanomaterial transformations in the environment: effects of changing exposure forms on bioaccumulation and toxicity. Small16, 202000618 (2020). PubMed

Curtis, B. J. et al. Cross-species transcriptomic signatures identify mechanisms related to species sensitivity and common responses to nanomaterials. Nat. Nanotechnol.17, 661–669 (2022). PubMed

Zoncu, R. et al. Mtorc1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-Atpase. Science334, 678–683 (2011). PubMed PMC

Van Veen, S. et al. Atp13a2 deficiency disrupts lysosomal polyamine export. Nature578, 419–424 (2020). PubMed

Chen, Y. et al. The origin of exceptionally large ductility in molybdenum alloys dispersed with irregular-shaped La2o3 nanoparticles. Nat. Commun.15, 4105 (2024). PubMed PMC

Qi, Y.-T. et al. Homeostasis inside single activated phagolysosomes: quantitative and selective measurements of submillisecond dynamics of reactive oxygen and nitrogen species production with a nanoelectrochemical sensor. J. Am. Chem. Soc.144, 9723–9733 (2022). PubMed

Rabel, M. et al. Simulation of the long-term fate of superparamagnetic iron oxide-based nanoparticles using simulated biological fluids. Nanomedicine14, 1681–1706 (2019). PubMed

Jiang, J. et al. Intracellular dehydrogenation catalysis leads to reductive stress and immunosuppression. Nat. Nanotechnol.10.1038/s41565-025-01870-y (2025). PubMed

Ma, Y. et al. Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology9, 262–270 (2015). PubMed

Ma, Y. et al. Phytotoxicity and biotransformation of La2o3 nanoparticles in a terrestrial plant cucumber (Cucumis Sativus). Nanotoxicology5, 743–753 (2011). PubMed

Zheng, H. et al. Biotransformation of rare earth oxide nanoparticles eliciting microbiota imbalance. Part. Fibre Toxicol.18, 17 (2021). PubMed PMC

Li, R. et al. Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1 beta producing inflammasome. Acs Nano8, 10280–10292 (2014). PubMed PMC

Fadeel, B. et al. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol.13, 537–543 (2018). PubMed

Tian, M. et al. Toxicological mechanism of individual susceptibility to formaldehyde-induced respiratory effects. Environ. Sci. Technol.56, 6511–6524 (2022). PubMed

Becker, K. A. et al. Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. Am. J. Respir. Cell Mol. Biol.42, 716–724 (2010). PubMed

Teichgraber, V. et al. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat. Med.14, 382–391 (2008). PubMed

Qi, X. M. et al. Pneumoconiosis: current status and future prospects. Chin. Med. J.134, 898–907 (2021). PubMed PMC

Lv, J. et al. Dissolution and microstructural transformation of Zno nanoparticles under the influence of phosphate. Environ. Sci. Technol.46, 7215–7221 (2012). PubMed

David, C. A., Galceran, J., Quattrini, F., Puy, J. & Rey-Castro, C. Dissolution and phosphate-induced transformation of Zno nanoparticles in synthetic saliva probed by agnes without previous solid-liquid separation. Comparison with Uf-Icp-Ms. Environ. Sci. Technol.53, 3823–3831 (2019). PubMed

Li, Z. et al. Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-Propanediamine. Nanotechnology20, 245603 (2009). PubMed

Chen, L. et al. Continuous shape- and spectroscopy-tuning of hematite nanocrystals. Inorg. Chem.49, 8411–8420 (2010). PubMed

Cai, X. et al. Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces. Nat. Commun.9, 4416 (2018). PubMed PMC

Joung, J. et al. Genome-scale crispr-Cas9 knockout and transcriptional activation screening. Nat. Protoc.12, 828–863 (2017). PubMed PMC

Tian, M. et al. Crispr screen identified that Ugt1a9 Was required for bisphenols-induced mitochondria dyshomeostasis. Environ. Res.205, 112427 (2022). PubMed

Zhang, Y. et al. Functional genomic screen of human stem cell differentiation reveals pathways involved in neurodevelopment and neurodegeneration. Proc. Natl. Acad. Sci. USA110, 12361–12366 (2013). PubMed PMC

Raudvere, U. et al. G:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 Update). Nucleic Acids Res.47, W191–W198 (2019). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...