Genetic modulation of rare earth nanoparticle biotransformation shapes biological outcomes
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
40210885
PubMed Central
PMC11985947
DOI
10.1038/s41467-025-58520-z
PII: 10.1038/s41467-025-58520-z
Knihovny.cz E-zdroje
- MeSH
- biotransformace genetika MeSH
- CRISPR-Cas systémy MeSH
- ježovky metabolismus MeSH
- kovové nanočástice * chemie MeSH
- kovy vzácných zemin * metabolismus chemie MeSH
- lidé MeSH
- lyzozomy metabolismus MeSH
- myši MeSH
- nanočástice * metabolismus chemie MeSH
- pyroptóza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kovy vzácných zemin * MeSH
The biotransformation of nanoparticles plays a crucial role in determining their biological fate and responses. Although a few engineering strategies (e.g., surface functionalization and shape control) have been employed to regulate the fate of nanoparticles, the genetic control of nanoparticle biotransformation remains an unexplored avenue. Herein, we utilized a CRISPR-based genome-scale knockout approach to identify genes involved in the biotransformation of rare earth oxide (REO) nanoparticles. We found that the biotransformation of REOs in lysosomes could be genetically controlled via SMPD1. Specifically, suppression of SMPD1 inhibited the transformation of La2O3 into sea urchin-shaped structures, thereby protecting against lysosomal damage, proinflammatory cytokine release, pyroptosis and RE-induced pneumoconiosis. Overall, our study provides insight into how to control the biological fate of nanomaterials.
Zobrazit více v PubMed
Palika, A. et al. An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles. Nat. Nanotechnol.16, 918–925 (2021). PubMed
Cai, X. et al. Molecular mechanisms, characterization methods, and utilities of nanoparticle biotransformation in nanosafety assessments. Small16, 1907663 (2020). PubMed
Gao, J. et al. Determining the cytotoxicity of rare earth element nanoparticles in macrophages and the involvement of membrane damage. Environ. Sci. Technol.51, 13938–13948 (2017). PubMed
Borkowska, M. et al. Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells. Nat. Nanotechnol.15, 331–341 (2020). PubMed
Mosquera, J., Garcia, I. & Liz-Marzan, L. M. Cellular uptake of nanoparticles versus small molecules: a matter of size. Acc. Chem. Res.51, 2305–2313 (2018). PubMed
Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol.11, 977–985 (2016). PubMed PMC
Li, R. et al. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design. Acs Nano8, 1771–1783 (2014). PubMed PMC
Cao, M. et al. Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nat. Nanotechnol.16, 708–716 (2021). PubMed
Malysheva, A., Ivask, A., Doolette, C. L., Voelcker, N. H. & Lombi, E. Cellular binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. Nat. Nanotechnol.16, 926–932 (2021). PubMed
Dordevic, L., Arcudi, F., Cacioppo, M. & Prato, M. A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol.17, 112–130 (2022). PubMed
Cai, R. et al. Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism. Proc. Natl. Acad. Sci. USA119, e2200363119 (2022). PubMed PMC
Nel, A. E. et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater.8, 543–557 (2009). PubMed
Leong, H. S. et al. On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechnol.14, 629–635 (2019). PubMed PMC
Oh, E. et al. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. Nat. Nanotechnol.11, 479–486 (2016). PubMed
Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mrna delivery by selective organ targeting nanoparticles. Proc. Natl. Acad. Sci. USA118, e2109256118 (2021). PubMed PMC
Wang, Z. et al. Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothecin bilayers for safe and synergistic cancer immunochemotherapy. Nat. Nanotechnol.16, 1130–1140 (2021). PubMed PMC
Liu, M. D. et al. A transistor-like Ph-sensitive nanodetergent for selective cancer therapy. Nat. Nanotechnol.17, 541–551 (2022). PubMed
Spurgeon, D. J., Lahive, E. & Schultz, C. L. Nanomaterial transformations in the environment: effects of changing exposure forms on bioaccumulation and toxicity. Small16, 202000618 (2020). PubMed
Curtis, B. J. et al. Cross-species transcriptomic signatures identify mechanisms related to species sensitivity and common responses to nanomaterials. Nat. Nanotechnol.17, 661–669 (2022). PubMed
Zoncu, R. et al. Mtorc1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-Atpase. Science334, 678–683 (2011). PubMed PMC
Van Veen, S. et al. Atp13a2 deficiency disrupts lysosomal polyamine export. Nature578, 419–424 (2020). PubMed
Chen, Y. et al. The origin of exceptionally large ductility in molybdenum alloys dispersed with irregular-shaped La2o3 nanoparticles. Nat. Commun.15, 4105 (2024). PubMed PMC
Qi, Y.-T. et al. Homeostasis inside single activated phagolysosomes: quantitative and selective measurements of submillisecond dynamics of reactive oxygen and nitrogen species production with a nanoelectrochemical sensor. J. Am. Chem. Soc.144, 9723–9733 (2022). PubMed
Rabel, M. et al. Simulation of the long-term fate of superparamagnetic iron oxide-based nanoparticles using simulated biological fluids. Nanomedicine14, 1681–1706 (2019). PubMed
Jiang, J. et al. Intracellular dehydrogenation catalysis leads to reductive stress and immunosuppression. Nat. Nanotechnol.10.1038/s41565-025-01870-y (2025). PubMed
Ma, Y. et al. Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology9, 262–270 (2015). PubMed
Ma, Y. et al. Phytotoxicity and biotransformation of La2o3 nanoparticles in a terrestrial plant cucumber (Cucumis Sativus). Nanotoxicology5, 743–753 (2011). PubMed
Zheng, H. et al. Biotransformation of rare earth oxide nanoparticles eliciting microbiota imbalance. Part. Fibre Toxicol.18, 17 (2021). PubMed PMC
Li, R. et al. Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1 beta producing inflammasome. Acs Nano8, 10280–10292 (2014). PubMed PMC
Fadeel, B. et al. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol.13, 537–543 (2018). PubMed
Tian, M. et al. Toxicological mechanism of individual susceptibility to formaldehyde-induced respiratory effects. Environ. Sci. Technol.56, 6511–6524 (2022). PubMed
Becker, K. A. et al. Acid sphingomyelinase inhibitors normalize pulmonary ceramide and inflammation in cystic fibrosis. Am. J. Respir. Cell Mol. Biol.42, 716–724 (2010). PubMed
Teichgraber, V. et al. Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis. Nat. Med.14, 382–391 (2008). PubMed
Qi, X. M. et al. Pneumoconiosis: current status and future prospects. Chin. Med. J.134, 898–907 (2021). PubMed PMC
Lv, J. et al. Dissolution and microstructural transformation of Zno nanoparticles under the influence of phosphate. Environ. Sci. Technol.46, 7215–7221 (2012). PubMed
David, C. A., Galceran, J., Quattrini, F., Puy, J. & Rey-Castro, C. Dissolution and phosphate-induced transformation of Zno nanoparticles in synthetic saliva probed by agnes without previous solid-liquid separation. Comparison with Uf-Icp-Ms. Environ. Sci. Technol.53, 3823–3831 (2019). PubMed
Li, Z. et al. Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1,2-Propanediamine. Nanotechnology20, 245603 (2009). PubMed
Chen, L. et al. Continuous shape- and spectroscopy-tuning of hematite nanocrystals. Inorg. Chem.49, 8411–8420 (2010). PubMed
Cai, X. et al. Multi-hierarchical profiling the structure-activity relationships of engineered nanomaterials at nano-bio interfaces. Nat. Commun.9, 4416 (2018). PubMed PMC
Joung, J. et al. Genome-scale crispr-Cas9 knockout and transcriptional activation screening. Nat. Protoc.12, 828–863 (2017). PubMed PMC
Tian, M. et al. Crispr screen identified that Ugt1a9 Was required for bisphenols-induced mitochondria dyshomeostasis. Environ. Res.205, 112427 (2022). PubMed
Zhang, Y. et al. Functional genomic screen of human stem cell differentiation reveals pathways involved in neurodevelopment and neurodegeneration. Proc. Natl. Acad. Sci. USA110, 12361–12366 (2013). PubMed PMC
Raudvere, U. et al. G:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 Update). Nucleic Acids Res.47, W191–W198 (2019). PubMed PMC