• This record comes from PubMed

Effects of Grape Pomace Complete Pellet Feed on Growth Performance, Fatty Acid Composition, and Rumen Fungal Composition in Beef Cattle

. 2025 Mar 24 ; 15 (7) : . [epub] 20250324

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
2022B02003 the Key R&D Tasks Special Program of Xinjiang Uygur Autonomous Region
XJARS-13-15 the Xinjiang Agriculture Research System
2022D01A69 the Natural Science Foundation Upper-level Project of Xinjiang Uygur Autonomous Region

Grape pomace, a winemaking byproduct, is nutrient- and polyphenol-rich, but research on its use in beef cattle is limited. This study explored the impact of grape pomace-based complete pellet feed on growth, serum biochemistry, fatty acid profile, and rumen microbiota in beef cattle. Fifteen healthy Simmental cattle were randomly divided into three groups (G0, G15, and G20) and fed a complete pelleted ration containing 0%, 15%, and 20% of grape pomace, respectively, for 60 days. The results showed that the addition of grape pomace to the ration markedly increased the average daily feed intake and average daily weight gain in beef cattle. In terms of biochemistry, the levels of total protein (TP) and albumin (ALB) in the G20 group were higher than in the G0 group (p > 0.05). The levels of oleic acid, linoleic acid, and behenic acid were higher in the G20 group than in the G0 group. Grape pomace had no significant effect on rumen fungal diversity and total volatile fatty acids (TVFAs) in beef cattle. The pH and ammonia nitrogen content in the G15 and G20 groups were significantly higher than that in the G0 group. This indicates that grape pomace can be used as feed raw material for beef cattle.

See more in PubMed

Gao Q., Liu H., Wang Z., Lan X., An J., Shen W., Wan F. Recent Advances in Feed and Nutrition of Beef Cattle in China—A Review. Anim. Biosci. 2023;36:529–539. doi: 10.5713/ab.22.0192. PubMed DOI PMC

Yeganehpour E., Taghizadeh A., Paya H., Hossein-Khani A., Palangi V., Shirmohammadi S., Abachi S. Utilization of Fruit and Vegetable Wastes as an Alternative Renewable Energy Source in Ruminants’ Diet. Biomass Convers. Biorefin. 2023;13:7909–7917. doi: 10.1007/s13399-021-01665-w. DOI

Patel K.P., Katole S.B. Un-Conventional Feeds—Need for a Conventional Approach. Indian Farmer. 2023;10:67–71.

Constantin O.E., Stoica F., Ratu R.N., Stanciuc N., Bahrim G.E., Rapeanu G. Bioactive Components, Applications, Extractions, and Health Benefits of Winery By-Products from a Circular Bioeconomy Perspective: A Review. Antioxidants. 2024;13:100. doi: 10.3390/antiox13010100. PubMed DOI PMC

Costa M.M., Alfaia C.M., Lopes P.A., Pestana J.M., Prates J.A.M. Grape By-Products as Feedstuff for Pig and Poultry Production. Animals. 2022;12:2239. doi: 10.3390/ani12172239. PubMed DOI PMC

Khiaosa-ard R., Mahmood M., Mickdam E., Pacífico C., Meixner J., Traintinger L.-S. Winery By-Products as a Feed Source with Functional Properties: Dose–Response Effect of Grape Pomace, Grape Seed Meal, and Grape Seed Extract on Rumen Microbial Community and Their Fermentation Activity in RUSITEC. J. Anim. Sci. Biotechnol. 2023;14:92. doi: 10.1186/s40104-023-00892-7. PubMed DOI PMC

Beres C., Costa G.N.S., Cabezudo I., da Silva-James N.K., Teles A.S.C., Cruz A.P.G., Mellinger-Silva C., Tonon R.V., Cabral L.M.C., Freitas S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017;68:581–594. doi: 10.1016/j.wasman.2017.07.017. PubMed DOI

Juráček M., Vašeková P., Massányi P., Kováčik A., Bíro D., Šimko M., Gálik B., Rolinec M., Hanušovský O., Kolláthová R., et al. The Effect of Dried Grape Pomace Feeding on Nutrients Digestibility and Serum Biochemical Profile of Wethers. Agriculture. 2021;11:1194. doi: 10.3390/agriculture11121194. DOI

Bešlo D., Došlić G., Agić D., Rastija V., Šperanda M., Gantner V., Lučić B. Polyphenols in Ruminant Nutrition and Their Effects on Reproduction. Antioxidants. 2022;11:970. doi: 10.3390/antiox11050970. PubMed DOI PMC

Ramdani D., Yuniarti E., Jayanegara A., Chaudhry A.S. Roles of Essential Oils, Polyphenols, and Saponins of Medicinal Plants as Natural Additives and Anthelmintics in Ruminant Diets: A Systematic Review. Animals. 2023;13:767. doi: 10.3390/ani13040767. PubMed DOI PMC

Molosse V.L., Deolindo G.L., Lago R.V.P., Cecere B.G.O., Zotti C.A., Vedovato M., Copetti P.M., Fracasso M., Morsch V.M., Xavier A.C.H., et al. The Effects of the Inclusion of Ensiled and Dehydrated Grape Pomace in Beef Cattle Diet: Growth Performance, Health, and Economic Viability. Anim. Feed Sci. Technol. 2023;302:115671. doi: 10.1016/j.anifeedsci.2023.115671. DOI

Domínguez R., Pateiro M., Munekata P.E.S., Zhang W., Garcia-Oliveira P., Carpena M., Prieto M.A., Bohrer B., Lorenzo J.M. Protein Oxidation in Muscle Foods: A Comprehensive Review. Antioxidants. 2022;11:60. doi: 10.3390/antiox11010060. PubMed DOI PMC

Hadidi M., Orellana-Palacios J.C., Aghababaei F., Gonzalez-Serrano D.J., Moreno A., Lorenzo J.M. Plant By-Product Antioxidants: Control of Protein-Lipid Oxidation in Meat and Meat Products. LWT. 2022;169:114003. doi: 10.1016/j.lwt.2022.114003. DOI

Beigh Y.A., Ganai A.M., Ahmad H.A. Prospects of Complete Feed System in Ruminant Feeding: A Review. Vet. World. 2017;10:424–437. doi: 10.14202/vetworld.2017.424-437. PubMed DOI PMC

Trinci A.P.J., Davies D.R., Gull K., Lawrence M.I., Bonde Nielsen B., Rickers A., Theodorou M.K. Anaerobic Fungi in Herbivorous Animals. Mycol. Res. 1994;98:129–152. doi: 10.1016/S0953-7562(09)80178-0. DOI

Wu X., Elekwachi C.O., Bai S., Luo Y., Zhang K., Forster R.J. Characterizing the Alteration in Rumen Microbiome and Carbohydrate-Active Enzymes Profile with Forage of Muskoxen Rumen through Comparative Metatranscriptomics. Microorganisms. 2022;10:71. doi: 10.3390/microorganisms10010071. PubMed DOI PMC

Cheng X., Du X., Liang Y., Degen A.A., Wu X., Ji K., Gao Q., Xin G., Cong H., Yang G. Effect of Grape Pomace Supplement on Growth Performance, Gastrointestinal Microbiota, and Methane Production in Tan Lambs. Front. Microbiol. 2023;14:1264840. doi: 10.3389/fmicb.2023.1264840. PubMed DOI PMC

Pauletto M., Elgendy R., Ianni A., Marone E., Giantin M., Grotta L., Ramazzotti S., Bennato F., Dacasto M., Martino G. Nutrigenomic Effects of Long-Term Grape Pomace Supplementation in Dairy Cows. Animals. 2020;10:714. doi: 10.3390/ani10040714. PubMed DOI PMC

Liao C., Sullivan P.J., Barrett C.B., Kassam K.-A.S. Socioenvironmental Threats to Pastoral Livelihoods: Risk Perceptions in the Altay and Tianshan Mountains of Xinjiang, China. Risk Anal. 2014;34:640–655. doi: 10.1111/risa.12146. PubMed DOI

AOAC . Official Methods of Analysis. 15th ed. Volume 1 Association of Official Analytical Chemists; Arlington, VA, USA: 1990.

Vansoest P., Robertson J., Lewis B. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991;74:3583–3597. doi: 10.3168/jds.S0022-0302(91)78551-2. PubMed DOI

Amarowicz R., Troszyńska A., Baryłko-Pikielna N., Shahidi F. Polyphenolics Extracts from Legume Seeds: Correlations Between Total Antioxidant Activity, Total Phenolics Content, Tannins Content and Astringency. J. Food Lipids. 2004;11:278–286. doi: 10.1111/j.1745-4522.2004.01143.x. DOI

Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Feeding Standard of Beef Cattle. China Agriculture Press; Beijing, China: 2004. (In Chinese)

Xavier C., Driesen C., Siegenthaler R., Dohme-Meier F., Le Cozler Y., Lerch S. Estimation of Empty Body and Carcass Chemical Composition of Lactating and Growing Cattle: Comparison of Imaging, Adipose Cellularity, and Rib Dissection Methods. Transl. Anim. Sci. 2022;6:txac066. doi: 10.1093/tas/txac066. PubMed DOI PMC

Dannenberger D., Nuernberg K., Herdmann A., Nuernberg G., Hagemann E., Kienast W. Dietary PUFA Intervention Affects Fatty Acid- and Micronutrient Profiles of Beef and Related Beef Products. Foods. 2013;2:295–309. doi: 10.3390/foods2030295. PubMed DOI PMC

Brito A.F., Broderick G.A. Effect of Varying Dietary Ratios of Alfalfa Silage to Corn Silage on Production and Nitrogen Utilization in Lactating Dairy Cows. J. Dairy Sci. 2006;89:3924–3938. doi: 10.3168/jds.S0022-0302(06)72435-3. PubMed DOI

Zinn R., Owens F. A Rapid Procedure for Purine Measurement and Its Use for Estimating Net Ruminal Protein-Synthesis. Can. J. Anim. Sci. 1986;66:157–166. doi: 10.4141/cjas86-017. DOI

Dimou C., Koutelidakis A. Value Added Alternatives of Winemaking Process Residues: A Health Based Oriented Perspective. BAOJ Biotechnol. 2016;2:016

Tayengwa T., Chikwanha O.C., Raffrenato E., Dugan M.E.R., Mutsvangwa T., Mapiye C. Comparative Effects of Feeding Citrus Pulp and Grape Pomace on Nutrient Digestibility and Utilization in Steers. Animal. 2021;15:100020. doi: 10.1016/j.animal.2020.100020. PubMed DOI

Caetano M., Wilkes M.J., Pitchford W.S., Lee S.J., Hynd P.I. Effect of Ensiled Crimped Grape Marc on Energy Intake, Performance and Gas Emissions of Beef Cattle. Anim. Feed Sci. Technol. 2019;247:166–172. doi: 10.1016/j.anifeedsci.2018.10.007. DOI

Escalera-Valente F., Alonso M.E., Lomillos-Pérez J.M., Gaudioso-Lacasa V.R., Alonso A.J., González-Montaña J.R. Blood Biochemical Variables Found in Lidia Cattle after Intense Exercise. Animals. 2021;11:2866. doi: 10.3390/ani11102866. PubMed DOI PMC

Carrillo-Muro O., Rodríguez-Cordero D., Hernández-Briano P., Correa-Aguado P.I., Medina-Flores C.A., Huerta-López L.A., Rodríguez-Valdez F.J., Rivera-Villegas A., Plascencia A. Enzymic Activity, Metabolites, and Hematological Responses in High-Risk Newly Received Calves for “Clinical Health” Reference Intervals. Animals. 2024;14:2342. doi: 10.3390/ani14162342. PubMed DOI PMC

Chedea V.S., Pelmus R.S., Lazar C., Pistol G.C., Calin L.G., Toma S.M., Dragomir C., Taranu I. Effects of a diet containing dried grape pomace on blood metabolites and milk composition of dairy cows. J. Sci. Food Agric. 2017;97:2516–2523. doi: 10.1002/jsfa.8068. PubMed DOI

Onasanya G.O., Oke F.O., Sanni T.M., Muhammad A.I. Parameters Influencing Haematological, Serum and Bio-Chemical References in Livestock Animals under Different Management Systems. Open J. Vet. Med. 2015;05:181. doi: 10.4236/ojvm.2015.58025. DOI

Martins Flores D.R., Franco da Fonseca P.A., Schmitt J., Tonetto C.J., Rosado Junior A.G., Hammerschmitt R.K., Facco D.B., Brunetto G., Nornberg J.L. Lambs Fed with Increasing Levels of Grape Pomace Silage: Effects on Productive Performance, Carcass Characteristics, and Blood Parameters. Livest. Sci. 2020;240:104169. doi: 10.1016/j.livsci.2020.104169. DOI

Wang Y., Wang Q., Dai C., Li J., Huang P., Li Y., Ding X., Huang J., Hussain T., Yang H. Effects of Dietary Energy on Growth Performance, Carcass Characteristics, Serum Biochemical Index, and Meat Quality of Female Hu Lambs. Anim. Nutr. 2020;6:499–506. doi: 10.1016/j.aninu.2020.05.008. PubMed DOI PMC

Alba D.F., Campigotto G., Cazarotto C.J., Dos Santos D.S., Gebert R.R., Reis J.H., Souza C.F., Baldissera M.D., Gindri A.L., Kempka A.P., et al. Use of Grape Residue Flour in Lactating Dairy Sheep in Heat Stress: Effects on Health, Milk Production and Quality. J. Therm. Biol. 2019;82:197–205. doi: 10.1016/j.jtherbio.2019.04.007. PubMed DOI

He P., Lei Y., Zhang K., Zhang R., Bai Y., Li Z., Jia L., Shi J., Cheng Q., Ma Y., et al. Dietary Oregano Essential Oil Supplementation Alters Meat Quality, Oxidative Stability, and Fatty Acid Profiles of Beef Cattle. Meat Sci. 2023;205:109317. doi: 10.1016/j.meatsci.2023.109317. PubMed DOI

De Nazaré Santos Torres R., Bertoco J.P.A., Arruda M.C.G., De Melo Coelho L., Paschoaloto J.R., Ezequiel J.M.B., Almeida M.T.C. The Effect of Dietary Inclusion of Crude Glycerin on Performance, Ruminal Fermentation, Meat Quality and Fatty Acid Profile of Beef Cattle: Meta-Analysis. Res. Vet. Sci. 2021;140:171–184. doi: 10.1016/j.rvsc.2021.08.019. PubMed DOI

Bennato F., Martino C., Ianni A., Giannone C., Martino G. Dietary Grape Pomace Supplementation in Lambs Affects the Meat Fatty Acid Composition, Volatile Profiles and Oxidative Stability. Foods. 2023;12:1257. doi: 10.3390/foods12061257. PubMed DOI PMC

Ponnampalam E.N., Sinclair A.J., Holman B.W.B. The Sources, Synthesis and Biological Actions of Omega-3 and Omega-6 Fatty Acids in Red Meat: An Overview. Foods. 2021;10:1358. doi: 10.3390/foods10061358. PubMed DOI PMC

Nogoy K.M.C., Sun B., Shin S., Lee Y., Li X.Z., Choi S.H., Park S. Fatty Acid Composition of Grain- and Grass-Fed Beef and Their Nutritional Value and Health Implication. Food Sci. Anim. Resour. 2022;42:18–33. doi: 10.5851/kosfa.2021.e73. PubMed DOI PMC

Arend F.A., Murdoch G.K., Doumit M.E., Chibisa G.E. Inclusion of Grape Pomace in Finishing Cattle Diets: Carcass Traits, Meat Quality and Fatty Acid Composition. Animals. 2022;12:2597. doi: 10.3390/ani12192597. PubMed DOI PMC

Vahmani P., Ponnampalam E.N., Kraft J., Mapiye C., Bermingham E.N., Watkins P.J., Proctor S.D., Dugan M.E.R. Bioactivity and Health Effects of Ruminant Meat Lipids. Invited Review. Meat Sci. 2020;165:108114. doi: 10.1016/j.meatsci.2020.108114. PubMed DOI

Sakowski T., Grodkowski G., Gołebiewski M., Slósarz J., Kostusiak P., Solarczyk P., Puppel K. Genetic and Environmental Determinants of Beef Quality—A Review. Front. Vet. Sci. 2022;9:819605. doi: 10.3389/fvets.2022.819605. PubMed DOI PMC

Molosse V.L., Deolindo G.L., Lago R.V.P., Klein B., Zotti C.A., Vedovato M., da Silveira M.V., Copetti P.M., Schetinger M.R.C., Favero J.F., et al. The Use of Secondary Grape Biomass in Beef Cattle Nutrition on Carcass Characteristics, Quality and Shelf Life of Meat. Food Nutr. Sci. 2024;15:447–469. doi: 10.4236/fns.2024.156030. DOI

Yao Y., Wang H., Lu Z., Nian F., Zheng C., Li F., Tang D. Improving Shelf Life and Content of Unsaturated Fatty Acids in Meat of Lambs Fed a Diet Supplemented with Grape Dregs. Foods. 2023;12:4204. doi: 10.3390/foods12234204. PubMed DOI PMC

Tayengwa T., Chikwanha O.C., Neethling J., Dugan M.E.R., Mutsvangwa T., Mapiye C. Polyunsaturated Fatty Acid, Volatile and Sensory Profiles of Beef from Steers Fed Citrus Pulp or Grape Pomace. Food Res. Int. 2021;139:109923. doi: 10.1016/j.foodres.2020.109923. PubMed DOI

Makmur M., Zain M., Sholikin M.M., Suharlina, Jayanegara A. Modulatory Effects of Dietary Tannins on Polyunsaturated Fatty Acid Biohydrogenation in the Rumen: A Meta-Analysis. Heliyon. 2022;8:e09828. doi: 10.1016/j.heliyon.2022.e09828. PubMed DOI PMC

Del Bianco S., Natalello A., Luciano G., Valenti B., Campidonico L., Gkarane V., Monahan F., Biondi L., Favotto S., Sepulcri A., et al. Influence of Dietary Inclusion of Tannin Extracts from Mimosa, Chestnut and Tara on Volatile Compounds and Flavour in Lamb Meat. Meat Sci. 2021;172:108336. doi: 10.1016/j.meatsci.2020.108336. PubMed DOI

Xiong Y., Guo C., Wang L., Chen F., Dong X., Li X., Ni K., Yang F. Effects of Paper Mulberry Silage on the Growth Performance, Rumen Microbiota and Muscle Fatty Acid Composition in Hu Lambs. Fermentation. 2021;7:286. doi: 10.3390/fermentation7040286. DOI

Hennessy A.A., Kenny D.A., Byrne C.J., Childs S., Ross R.P., Devery R., Stanton C. Fatty Acid Concentration of Plasma, Muscle, Adipose and Liver from Beef Heifers Fed an Encapsulated n-3 Polyunsaturated Fatty Acid Supplement. Animal. 2021;15:100039. doi: 10.1016/j.animal.2020.100039. PubMed DOI

Pogorzelski G., Pogorzelska-Nowicka E., Pogorzelski P., Półtorak A., Hocquette J.-F., Wierzbicka A. Towards an Integration of Pre- and Post-Slaughter Factors Affecting the Eating Quality of Beef. Livest. Sci. 2022;255:104795. doi: 10.1016/j.livsci.2021.104795. DOI

Davis H., Magistrali A., Butler G., Stergiadis S. Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef. Foods. 2022;11:646. doi: 10.3390/foods11050646. PubMed DOI PMC

Nuernberg K., Dannenberger D., Nuernberg G., Ender K., Voigt J., Scollan N.D., Wood J.D., Nute G.R., Richardson R.I. Effect of a Grass-Based and a Concentrate Feeding System on Meat Quality Characteristics and Fatty Acid Composition of Longissimus Muscle in Different Cattle Breeds. Livest. Prod. Sci. 2005;94:137–147. doi: 10.1016/j.livprodsci.2004.11.036. DOI

Wang Q., Zeng Y., Zeng X., Wang X., Wang Y., Dai C., Li J., Huang P., Huang J., Hussain T., et al. Effects of Dietary Energy Levels on Rumen Fermentation, Gastrointestinal Tract Histology, and Bacterial Community Diversity in Fattening Male Hu Lambs. Front. Microbiol. 2021;12:695445. doi: 10.3389/fmicb.2021.695445. PubMed DOI PMC

Li J., Yan H., Chen J., Duan C., Guo Y., Liu Y., Zhang Y., Ji S. Correlation of Ruminal Fermentation Parameters and Rumen Bacterial Community by Comparing Those of the Goat, Sheep, and Cow In Vitro. Fermentation. 2022;8:427. doi: 10.3390/fermentation8090427. DOI

Zhan J., Liu M., Wu C., Su X., Zhan K., Zhao G. qi Effects of Alfalfa Flavonoids Extract on the Microbial Flora of Dairy Cow Rumen. Asian-Australas. J. Anim. Sci. 2017;30:1261–1269. doi: 10.5713/ajas.16.0839. PubMed DOI PMC

Li F., Cao Y., Liu N., Yang X., Yao J., Yan D. Subacute Ruminal Acidosis Challenge Changed in Situ Degradability of Feedstuffs in Dairy Goats. J. Dairy Sci. 2014;97:5101–5109. doi: 10.3168/jds.2013-7676. PubMed DOI

Ramos S.C., Jeong C.D., Mamuad L.L., Kim S.H., Kang S.H., Kim E.T., Cho Y.I., Lee S.S., Lee S.S. Diet Transition from High-Forage to High-Concentrate Alters Rumen Bacterial Community Composition, Epithelial Transcriptomes and Ruminal Fermentation Parameters in Dairy Cows. Animals. 2021;11:838. doi: 10.3390/ani11030838. PubMed DOI PMC

Sato S. Pathophysiological Evaluation of Subacute Ruminal Acidosis (SARA) by Continuous Ruminal pH Monitoring. Anim. Sci. J. 2016;87:168–177. PubMed PMC

Ren C., Zhang X., Wei H., Wang S., Wang W., He L., Lu Y., Zhang K., Zhang Z., Wang G., et al. Effect of Replacing Alfalfa Hay with Common Vetch Hay in Sheep Diets on Growth Performance, Rumen Fermentation and Rumen Microbiota. Animals. 2024;14:2182. doi: 10.3390/ani14152182. PubMed DOI PMC

Dewhurst R.J., Newbold J.R. Effect of Ammonia Concentration on Rumen Microbial Protein Production in Vitro. Br. J. Nutr. 2022;127:847–849. doi: 10.1017/S000711452100458X. PubMed DOI

Liu C., Li D., Chen W., Li Y., Wu H., Meng Q., Zhou Z. Estimating Ruminal Crude Protein Degradation from Beef Cattle Feedstuff. Sci. Rep. 2019;9:11368. doi: 10.1038/s41598-019-47768-3. PubMed DOI PMC

(PDF) Effect of Carbohydrate Source on Ammonia Utilization in Lactating Dairy Cow. [(accessed on 12 March 2025)]. Available online: https://www.researchgate.net/publication/8085997_Effect_of_carbohydrate_source_on_ammonia_utilization_in_lactating_dairy_cow.

Vinyard J.R., Myers C.A., Murdoch G.K., Rezamand P., Chibisa G.E. Optimum Grape Pomace Proportion in Feedlot Cattle Diets: Ruminal Fermentation, Total Tract Nutrient Digestibility, Nitrogen Utilization, and Blood Metabolites. J. Anim. Sci. 2021;99:skab044. doi: 10.1093/jas/skab044. PubMed DOI PMC

Wang L., Zhang G., Li Y., Zhang Y. Effects of High Forage/Concentrate Diet on Volatile Fatty Acid Production and the Microorganisms Involved in VFA Production in Cow Rumen. Animals. 2020;10:223. doi: 10.3390/ani10020223. PubMed DOI PMC

Guerra-Rivas C., Gallardo B., Mantecon A.R., del Alamo-Sanza M., Manso T. Evaluation of Grape Pomace from Red Wine By-Product as Feed for Sheep. J. Sci. Food Agric. 2017;97:1885–1893. doi: 10.1002/jsfa.7991. PubMed DOI

Norris A.B., Crossland W.L., Tedeschi L.O., Foster J.L., Muir J.P., Pinchak W.E., Fonseca M.A. Inclusion of Quebracho Tannin Extract in a High-Roughage Cattle Diet Alters Digestibility, Nitrogen Balance, and Energy Partitioning. J. Anim. Sci. 2020;98:skaa047. doi: 10.1093/jas/skaa047. PubMed DOI PMC

Kara K., Öztaş M.A. The Effect of Dietary Fermented Grape Pomace Supplementation on In Vitro Total Gas and Methane Production, Digestibility, and Rumen Fermentation. Fermentation. 2023;9:741. doi: 10.3390/fermentation9080741. DOI

Newbold C.J., Ramos-Morales E. Review: Ruminal Microbiome and Microbial Metabolome: Effects of Diet and Ruminant Host. Animal. 2020;14:S78–S86. doi: 10.1017/S1751731119003252. PubMed DOI

Krol B., Slupczynska M., Wilk M., Asghar M.U., Cwynar P. Anaerobic Rumen Fungi and Fungal Direct-Fed Microbials in Ruminant Feeding. J. Anim. Feed Sci. 2023;32:3–16. doi: 10.22358/jafs/153961/2022. DOI

Péter G. Rumen Microbiology: From Evolution to Revolution. Springer; New Delhi, India: 2015. DOI

Zhang Y., Li F., Chen Y., Wu H., Meng Q., Guan L.L. Metatranscriptomic Profiling Reveals the Effect of Breed on Active Rumen Eukaryotic Composition in Beef Cattle With Varied Feed Efficiency. Front. Microbiol. 2020;11:367. doi: 10.3389/fmicb.2020.00367. PubMed DOI PMC

da Silva E.B.R., da Silva J.A.R., da Silva W.C., Belo T.S., Sousa C.E.L., Santos M.R.P.D., Neves K.A.L., Rodrigues T.C.G.D.C., Camargo-Junior R.N.C., Lourenco-Junior J.D.B. A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants. Animals. 2024;14:1448. doi: 10.3390/ani14101448. PubMed DOI PMC

Hanafy R.A., Dagar S.S., Griffith G.W., Pratt C.J., Youssef N.H., Elshahed M.S. Taxonomy of the Anaerobic Gut Fungi (Neocallimastigomycota): A Review of Classification Criteria and Description of Current Taxa. Int. J. Syst. Evol. Microbiol. 2022;72:005322. doi: 10.1099/ijsem.0.005322. PubMed DOI

Wang X., Zhang Q., Xu T., Hu L., Zhao N., Liu H., Xu S. Effects of Winter Barn Feeding and Grazing on Growth Performance, Meat Quality and Rumen Fungal Community of Tibetan Sheep. Ital. J. Anim. Sci. 2023;22:959–971. doi: 10.1080/1828051X.2023.2256773. DOI

Carberry C.A., Waters S.M., Kenny D.A., Creevey C.J. Rumen Methanogenic Genotypes Differ in Abundance According to Host Residual Feed Intake Phenotype and Diet Type. Appl. Environ. Microbiol. 2014;80:2039. doi: 10.1128/AEM.00318-14. PubMed DOI PMC

Saminathan M., Ramiah S.K., Gan H.M., Abdullah N., Wong C.M.V.L., Ho Y.W., Idrus Z. In Vitro Study on the Effects of Condensed Tannins of Different Molecular Weights on Bovine Rumen Fungal Population and Diversity. Ital. J. Anim. Sci. 2019;18:1451–1462. doi: 10.1080/1828051X.2019.1681304. DOI

Khiaosa-ard R., Pacifico C., Mahmood M., Mickdam E., Meixner J., Traintinger L.-S., Zebeli Q. Changes in the Solid-Associated Bacterial and Fungal Communities Following Ruminal in Vitro Fermentation of Winery by-Products: Aspects of the Bioactive Compounds and Feed Safety. Anaerobe. 2024;89:102893. doi: 10.1016/j.anaerobe.2024.102893. PubMed DOI

Nidhina N., Bhavya M.L., Bhaskar N., Muthukumar S.P., Murthy P.S. Aflatoxin Production by Aspergillus Flavus in Rumen Liquor and Its Implications. Food Control. 2017;71:26–31. doi: 10.1016/j.foodcont.2016.05.051. DOI

Vilela A. Non-Saccharomyces Yeasts and Organic Wines Fermentation: Implications on Human Health. Fermentation. 2020;6:54. doi: 10.3390/fermentation6020054. DOI

Zhou X., Zhang N., Zhang J., Gu Q., Dong C., Lin B., Zou C. Microbiome and Fermentation Parameters in the Rumen of Dairy Buffalo in Response to Ingestion Associated with a Diet Supplemented with Cysteamine and Hemp Seed Oil. J. Anim. Physiol. Anim. Nutr. 2022;106:471–484. doi: 10.1111/jpn.13616. PubMed DOI

Belanche A., Doreau M., Edwards J.E., Moorby J.M., Pinloche E., Newbold C.J. Shifts in the Rumen Microbiota Due to the Type of Carbohydrate and Level of Protein Ingested by Dairy Cattle Are Associated with Changes in Rumen Fermentation. J. Nutr. 2012;142:1684–1692. doi: 10.3945/jn.112.159574. PubMed DOI

Shen J., Zheng W., Xu Y., Yu Z. The Inhibition of High Ammonia to in Vitro Rumen Fermentation Is pH Dependent. Front. Vet. Sci. 2023;10:1163021. doi: 10.3389/fvets.2023.1163021. PubMed DOI PMC

Guo W., Zhou M., Ma T., Bi S., Wang W., Zhang Y., Huang X., Guan L.L., Long R. Survey of Rumen Microbiota of Domestic Grazing Yak during Different Growth Stages Revealed Novel Maturation Patterns of Four Key Microbial Groups and Their Dynamic Interactions. Anim. Microbiome. 2020;2:23. doi: 10.1186/s42523-020-00042-8. PubMed DOI PMC

Srinivasan R., Prabhu G., Prasad M., Mishra M., Chaudhary M., Srivastava R. Beneficial Microbes in Agro-Ecology. Elsevier; Amsterdam, The Netherlands: 2020. Penicillium; pp. 651–667.

Lin M., Feng L., Cheng Z., Wang K. Effect of Ethanol or Lactic Acid on Volatile Fatty Acid Profile and Microbial Community in Short-Term Sequentially Transfers by Ruminal Fermented with Wheat Straw in Vitro. Process Biochem. 2021;102:369–375. doi: 10.1016/j.procbio.2020.12.018. DOI

Sosa A., Saro C., Mateos I., Díaz A., Galindo J., Carro M.D., Ranilla M.J. Efecto de Aspergillus oryzae en la fermentación ruminal de una dieta de heno de alfalfa: Concentrado con la utilización de la técnica de simulación de rumen (Rusitec) Cuba. J. Agric. Sci. 2020;54:183–192.

Kong F., Lu N., Liu Y., Zhang S., Jiang H., Wang H., Wang W., Li S. Aspergillus Oryzae and Aspergillus Niger Co-Cultivation Extract Affects In Vitro Degradation, Fermentation Characteristics, and Bacterial Composition in a Diet-Specific Manner. Animals. 2021;11:1248. doi: 10.3390/ani11051248. PubMed DOI PMC

Donyadoust M., KHalilvandi Behrouzyar H., Pirmohammadi R., Donyadoust M. Evaluation the Effects of Biological Processing of Wheat Straw by Aspergillus Oryzae on Rumen Fermentation Parameters and Fiber Degradability in Ruminants. J. Rumin. Res. 2023;10:1–20. doi: 10.22069/ejrr.2022.19674.1818. DOI

Wang C., You Y., Huang W., Zhan J. The High-Value and Sustainable Utilization of Grape Pomace: A Review. Food Chem. X. 2024;24:101845. doi: 10.1016/j.fochx.2024.101845. PubMed DOI PMC

Bakasa C. Ph.D. Thesis. Stellenbosch University; Stellenbosch, South Africa: 2022. Modelling the Environmental, Social, and Economic Implications of Using Fruit Pomace as an Alternative Livestock Feed Resource: A System Dynamic Modelling Approach.

Kokkinomagoulos E., Kandylis P. Grape Pomace, an Undervalued by-Product: Industrial Reutilization within a Circular Economy Vision. Rev. Environ. Sci. Biotechnol. 2023;22:739–773. doi: 10.1007/s11157-023-09665-0. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...