Antibacterial properties of silver and gold nanoparticles synthesized using Cannabis sativa waste extract against Pseudomonas aeruginosa
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
40221737
PubMed Central
PMC11992773
DOI
10.1186/s42238-025-00272-0
PII: 10.1186/s42238-025-00272-0
Knihovny.cz E-zdroje
- Klíčová slova
- Antimicrobials, Cannabis, Nanoparticles, Synthesis, Waste valorization,
- Publikační typ
- časopisecké články MeSH
AIMS: The study aimed to explore the sustainable synthesis of metal nanoparticles using a green and eco-friendly resource. Specifically, it investigated the utilization of Cannabis sativa waste extract for the production of gold and silver nanoparticles, focusing on their antimicrobial activity against gram-negative bacteria, particularly Pseudomonas aeruginosa strains, which are significant in nosocomial infections. METHODS: Cannabis sativa waste extract was employed to synthesize gold and silver nanoparticles through a green synthesis approach. The produced nanoparticles were characterized using transmission electron microscopy (TEM), atomic absorption spectrometry (AAS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The antimicrobial efficacy of the synthesized nanoparticles was assessed through their minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimal biofilm inhibitory concentration (MBIC) against Pseudomonas aeruginosa, utilizing a microcultivation device, solid medium cultivation, and a metabolic activity assay in a polystyrene microtiter plate, respectively. RESULTS: The TEM analysis revealed the size and morphology of the nanoparticles, while AAS confirmed their concentration. XRD provided insights into the crystalline structure, and FTIR analysis identified the molecular structure of the nanoparticle's stabilizing layer. The synthesized nanoparticles showed significant antimicrobial activity against Pseudomonas aeruginosa, with determined MIC, MBC, and MBIC values of produced silver nanoparticles, showcasing their potential as effective antimicrobial agents. CONCLUSIONS: This study successfully demonstrated the synthesis of silver and gold nanoparticles using Cannabis sativa waste extract and highlighted their potent antimicrobial properties. It underscores the potential of utilizing plant waste extracts in sustainable nanomaterial synthesis and contributes to the fields of green nanotechnology and waste valorization within the circular economy. The findings also offer valuable insights into developing natural waste source-based antimicrobial agents.
Zobrazit více v PubMed
Aboelmaati MG, Abdel Gaber SA, Soliman WE, Elkhatib WF, Abdelhameed AM, Sahyon HA, El-Kemary M. Biogenic and biocompatible silver nanoparticles for an apoptotic anti-ovarian activity and as polydopamine-functionalized antibiotic carrier for an augmented antibiofilm activity. Colloids Surf B. 2021;206:111935. 10.1016/j.colsurfb.2021.111935. PubMed
Adil SF, Assal ME, Khan M, Al-Warthan A, Siddiqui MRH, Liz-Marzán LM. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Trans. 2015;44:9709–17. 10.1039/C4DT03222E. PubMed
Ali SG, Ansari MA, Khan HM, Jalal M, Mahdi AA, Cameotra SS. 2018. Antibacterial and antibiofilm potential of green synthesized silver nanoparticles against Imipenem resistant clinical isolates of P. Aeruginosa. BioNanoSci. 8, 544–53. 10.1007/s12668-018-0505-8
Ali SG, Ansari MA, Alzohairy MA, Alomary MN, AlYahya S, Jalal M, Khan HM, Asiri SMM, Ahmad W, Mahdi AA, El-Sherbeeny AM, El-Meligy MA. Biogenic gold nanoparticles as potent antibacterial and antibiofilm Nano-Antibiotics against Pseudomonas aeruginosa. Antibiotics. 2020;9:100. 10.3390/antibiotics9030100. PubMed PMC
Alzahrani S, Ali HM, Althubaiti EH, Ahmed MM. Green synthesis of gold nanoparticles, silver nanoparticles and gold-Silver alloy nanoparticles using Ziziphus spina-christi leaf extracts and antibacterial activity against Multidrug-Resistant bacteria. Indian J Pharm Sci. 2022;0:42–53. 10.36468/pharmaceutical-sciences.spl.490.
Andre CM, Hausman J-F, Guerriero G. Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci. 2016;7. 10.3389/fpls.2016.00019. PubMed PMC
Arokiyaraj S, Vincent S, Saravanan M, Lee Y, Oh YK, Kim KH. Green synthesis of silver nanoparticles using rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif Cells Nanomed Biotechnol. 2017;45:372–9. 10.3109/21691401.2016.1160403. PubMed
Balasubramanian S, Kala SMJ, Pushparaj TL. Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities. J Drug Deliv Sci Technol. 2020;57:101620. 10.1016/j.jddst.2020.101620.
Bankar A, Joshi B, Kumar AR, Zinjarde S. Banana Peel extract mediated synthesis of gold nanoparticles. Colloids Surf B Biointerfaces. 2010;80:45–50. 10.1016/j.colsurfb.2010.05.029. PubMed
Barai AC, Paul K, Dey A, Manna S, Roy S, Bag BG, Mukhopadhyay C. Green synthesis of nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Convergence. 2018;5:10. 10.1186/s40580-018-0142-5. PubMed PMC
Baruwati B, S Varma R. High value products from waste: grape pomace Extract—A Three-in-One package for the synthesis of metal nanoparticles. Chemsuschem. 2009;2:1041–4. 10.1002/cssc.200900220. PubMed
Beleggia R, Menga V, Fulvio F, Fares C, Trono D. Effect of genotype, year, and their interaction on the accumulation of bioactive compounds and the antioxidant activity in industrial hemp (Cannabis sativa L.) inflorescences. Int J Mol Sci. 2023;24:8969. 10.3390/ijms24108969. PubMed PMC
Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME. Nanoparticles functionalized with ampicillin destroy Multiple-Antibiotic-Resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and Methicillin-Resistant Staphylococcus aureus. Appl Environ Microbiol. 2012;78:2768–74. 10.1128/AEM.06513-11. PubMed PMC
Castro L, Blázquez ML, González F, Muñoz JÁ, Ballester A. Biosynthesis of silver and platinum nanoparticles using orange Peel extract: characterisation and applications. IET Nanobiotechnol. 2015;9:252–8. 10.1049/iet-nbt.2014.0063. PubMed
Chahardoli A, Karimi N, Fattahi A, Salimikia I. Biological applications of phytosynthesized gold nanoparticles using leaf extract of dracocephalum kotschyi. J Biomedical Mater Res Part A. 2019;107:621–30. 10.1002/jbm.a.36578. PubMed
Chang Y, Zheng C, Chinnathambi A, Alahmadi TA, Alharbi SA. Cytotoxicity, anti-acute leukemia, and antioxidant properties of gold nanoparticles green-synthesized using cannabis sativa L leaf aqueous extract. Arab J Chem. 2021;14:103060. 10.1016/j.arabjc.2021.103060.
Cheng Z, Tang S, Feng J, Wu Y. Biosynthesis and antibacterial activity of silver nanoparticles using Flos sophorae Immaturus extract. Heliyon. 2022;8:e10010. 10.1016/j.heliyon.2022.e10010. PubMed PMC
Chouhan S, Guleria S. Green synthesis of AgNPs using cannabis sativa leaf extract: characterization, antibacterial, anti-yeast and α-amylase inhibitory activity. Mater Sci Energy Technol. 2020;3:536–44. 10.1016/j.mset.2020.05.004.
Csakvari AC, Moisa C, Radu DG, Olariu LM, Lupitu AI, Panda AO, Pop G, Chambre D, Socoliuc V, Copolovici L, Copolovici DM. Green synthesis, characterization, and antibacterial properties of silver nanoparticles obtained by using diverse varieties of cannabis sativa leaf extracts. Molecules. 2021;26:4041. 10.3390/molecules26134041. PubMed PMC
Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012;33:2327–33. 10.1016/j.biomaterials.2011.11.057. PubMed
Dakal TC, Kumar A, Majumdar RS, Yadav V. 2016. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7. PubMed PMC
de Jorge TA, Souza R, Franchi LR, L.P. Silver nanoparticles: an integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicol Environ Saf. 2019;171:691–700. 10.1016/j.ecoenv.2018.12.095. PubMed
Dikshit PK, Kumar J, Das A, Sadhu S, Sharma S, Singh S, Gupta P, Kim BS. Green synthesis of metallic nanoparticles: applications and limitations. Catalysts. 2021;11:1–37. 10.3390/catal11080902.
Divakaran D, Lakkakula JR, Thakur M, Kumawat MK, Srivastava R. Dragon fruit extract capped gold nanoparticles: synthesis and their differential cytotoxicity effect on breast cancer cells. Mater Lett. 2019;236:498–502. 10.1016/j.matlet.2018.10.156.
El-Borady OM, Fawzy M, Hosny M. Antioxidant, anticancer and enhanced photocatalytic potentials of gold nanoparticles biosynthesized by common Reed leaf extract. Appl Nanosci. 2021. 10.1007/s13204-021-01776-w.
El-Seedi HR, El-Shabasy RM, Khalifa SAM, Saeed A, Shah A, Shah R, Iftikhar FJ, Abdel-Daim MM, Omri A, Hajrahand NH, Sabir JSM, Zou X, Halabi MF, Sarhan W, Guo W. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv. 2019;9:24539–59. 10.1039/C9RA02225B. PubMed PMC
ElSohly MA, Slade D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci. 2005;78:539–48. 10.1016/j.lfs.2005.09.011. NATURECEUTICALS (NATURAL PRODUCTS), NUTRACEUTICALS, HERBAL BOTANICALS, AND PSYCHOACTIVES: DRUG DISCOVERY AND DRUG-DRUG INTERACTIONS. PubMed
Feizi S, Taghipour E, Ghadam P, Mohammadi P. Antifungal, antibacterial, antibiofilm and colorimetric sensing of toxic metals activities of eco friendly, economical synthesized Ag/AgCl nanoparticles using Malva sylvestris leaf extracts. Microb Pathog. 2018;125:33–42. 10.1016/j.micpath.2018.08.054. PubMed
Gan PP, Ng SH, Huang Y, Li SFY. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour Technol. 2012;113:132–5. 10.1016/j.biortech.2012.01.015. PubMed
Gurunathan S, Han JW, Kwon D-N, Kim J-H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett. 2014;9:373. 10.1186/1556-276X-9-373. PubMed PMC
Hameed S, Shah AS, Iqbal J, Numan M, Muhammad W, Junaid M, Shah S, Khurshid R, Umer F. Cannabis sativa-mediated synthesis of gold nanoparticles and their biomedical properties. Bioinspired Biomim Nanobiomaterials. 2020. 10.1680/jbibn.19.00023.
Hassan SE-D, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM. New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiation Res Appl Sci. 2018;11:262–70. 10.1016/j.jrras.2018.05.003.
Hosny M, Fawzy M. Instantaneous phytosynthesis of gold nanoparticles via persicaria salicifolia leaf extract, and their medical applications. Adv Powder Technol. 2021;32:2891–904. 10.1016/j.apt.2021.06.004.
Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–50.
Javan bakht Dalir S, Djahaniani H, Nabati F, Hekmati M. Characterization and the evaluation of antimicrobial activities of silver nanoparticles biosynthesized from Carya illinoinensis leaf extract. Heliyon. 2020;6:e03624. 10.1016/j.heliyon.2020.e03624. PubMed PMC
Jayakumar A, Vedhaiyan RK. Rapid synthesis of phytogenic silver nanoparticles using clerodendrum splendens: its antibacterial and antioxidant activities. Korean J Chem Eng. 2019;36:1869–81. 10.1007/s11814-019-0389-5.
Khan F, Manivasagan P, Lee J-W, Pham DTN, Oh J, Kim Y-M. Fucoidan-Stabilized gold Nanoparticle-Mediated biofilm Inhibition, Attenuation of virulence and motility properties in Pseudomonas aeruginosa PAO1. Mar Drugs. 2019;17:208. 10.3390/md17040208. PubMed PMC
Kumara Swamy M, Sudipta KM, Jayanta K, Balasubramanya S. The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from leptadenia reticulata leaf extract. Appl Nanosci. 2015;5:73–81. 10.1007/s13204-014-0293-6.
Lee H-J, Lee G, Jang NR, Yun JH, Song JY, Kim BS. Biological synthesis of copper nanoparticles using plant extract. Tech Proc 2011 NSTI Nanatechnol Conf Expo NSTI-Nanotech 2011. 2011;1:371–4.
Mah T-F, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature. 2003;426:306–10. 10.1038/nature02122. PubMed
Makarov V, Love A, Sinitsyna O, Makarova S, Yaminsky I, Taliansky M, Kalinina N. 2014. Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (англоязычная версия) 6. PubMed PMC
Markowska K, Grudniak AM, Krawczyk K, Wróbel I, Wolska KI. Modulation of antibiotic resistance and induction of a stress response in Pseudomonas aeruginosa by silver nanoparticles. J Med Microbiol. 2014;63:849–54. 10.1099/jmm.0.068833-0. PubMed
Maťátková O, Michailidu J, Miškovská A, Kolouchová I, Masák J, Čejková A. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv. 2022;58:107905. 10.1016/j.biotechadv.2022.107905. PubMed
Mehta BK, Chhajlani M, Shrivastava BD. Green synthesis of silver nanoparticles and their characterization by XRD. J Phys: Conf Ser. 2017;836:012050. 10.1088/1742-6596/836/1/012050.
Namdar D, Mazuz M, Ion A, Koltai H. Variation in the compositions of cannabinoid and terpenoids in Cannabis sativa derived from inflorescence position along the stem and extraction methods. Ind Crops Prod. 2018;113:376–82. 10.1016/j.indcrop.2018.01.060.
Okaiyeto K, Ojemaye MO, Hoppe H, Mabinya LV, Okoh AI. Phytofabrication of silver/silver chloride nanoparticles using aqueous leaf extract of Oedera genistifolia: characterization and antibacterial potential. Molecules. 2019;24:4382. 10.3390/molecules24234382. PubMed PMC
Parvathiraja C, Shailajha S, Shanavas S, Gurung J. Biosynthesis of silver nanoparticles by Cyperus pangorei and its potential in structural, optical and catalytic dye degradation. Appl Nanosci. 2021;11:477–91. 10.1007/s13204-020-01585-7.
Rahal JJ, Simberkoff MS. Bactericidal and bacteriostatic action of Chloramphenicol against meningeal pathogens. Antimicrob Agents Chemother. 1979;16:13–8. 10.1128/AAC.16.1.13. PubMed PMC
Rollová M, Gharwalova L, Krmela A, Schulzová V, Hajšlová J, Jaroš P, Kolouchová I, Maťátková O. Grapevine extracts and their effect on selected gut-associated microbiota: in vitro study. Czech J Food Sci. 2020;38(2020):137–43. 10.17221/308/2019-CJFS.
Sabaeifard P, Abdi-Ali A, Soudi MR, Dinarvand R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J Microbiol Methods. 2014;105:134–40. 10.1016/j.mimet.2014.07.024. PubMed
Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. 2021;199:344–70. 10.1007/s12011-020-02138-3. PubMed
Salleh A, Naomi R, Utami ND, Mohammad AW, Mahmoudi E, Mustafa N, Fauzi MB. The potential of silver nanoparticles for antiviral and antibacterial applications: A mechanism of action. Nanomaterials. 2020;10:1566. 10.3390/nano10081566. PubMed PMC
Serra E, Hidalgo-Bastida LA, Verran J, Williams D, Malic S. Antifungal activity of commercial essential oils and biocides against Candida albicans. Pathogens. 2018;7:15. 10.3390/pathogens7010015. PubMed PMC
Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S. Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials. 2016;6:71. 10.3390/nano6040071. PubMed PMC
Sharma M, Manoharlal R, Negi AS, Prasad R. Synergistic anticandidal activity of pure polyphenol Curcumin I in combination with Azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res. 2010;10:570–8. 10.1111/j.1567-1364.2010.00637.x. PubMed
Shin D-S, Eom Y-B. Zerumbone inhibits Candida albicans biofilm formation and hyphal growth. Can J Microbiol. 2019. 10.1139/cjm-2019-0155. PubMed
Singh K, Panghal M, Kadyan S, Chaudhary U, Yadav JP. Green silver nanoparticles of phyllanthus Amarus: as an antibacterial agent against multi drug resistant clinical isolates of Pseudomonas aeruginosa. J Nanobiotechnol. 2014;12:40. 10.1186/s12951-014-0040-x. PubMed PMC
Singh P, Garg A, Pandit S, Mokkapati VRSS, Mijakovic I. Antimicrob Eff Biogenic Nanopart Nanomaterials. 2018a;8:1009. 10.3390/nano8121009. PubMed PMC
Singh P, Pandit S, Garnæs J, Tunjic S, Mokkapati VR, Sultan A, Thygesen A, Mackevica A, Mateiu RV, Daugaard AE, Baun A, Mijakovic I. Green synthesis of gold and silver nanoparticles from cannabis sativa (industrial hemp) and their capacity for biofilm Inhibition. Int J Nanomed. 2018b;13:3571–91. 10.2147/IJN.S157958. PubMed PMC
Singh T, Jyoti K, Patnaik A, Singh A, Chauhan SC. Spectroscopic, microscopic characterization of cannabis sativa leaf extract mediated silver nanoparticles and their synergistic effect with antibiotics against human pathogen. Alexandria Eng J. 2018c;57:3043–51. 10.1016/j.aej.2018.04.002.
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK-S, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock REW, Lory S, Olson MV. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406:959–64. 10.1038/35023079. PubMed
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83:761–9. 10.1038/sj.clpt.6100400. PubMed
Zhang Y, Cheng X, Zhang, Yucang, Xue X, Fu Y. Biosynthesis of silver nanoparticles at room temperature using aqueous Aloe leaf extract and antibacterial properties. Colloids Surf A. 2013;423:63–8. 10.1016/j.colsurfa.2013.01.059.
Zhao Y, Tian Y, Cui Y, Liu W, Ma W, Jiang X. Small Molecule-Capped gold nanoparticles as potent antibacterial agents that target Gram-Negative bacteria. J Am Chem Soc. 2010;132:12349–56. 10.1021/ja1028843. PubMed