Hydrogen Controls the Heavy Atom Roaming in Transient Negative Ion
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40227002
PubMed Central
PMC12023026
DOI
10.1021/jacs.4c18446
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Bromine and hydrogen play unusual roles as mobile atom and dissociation dynamics moderator, respectively, during roaming in the 3-bromo-4H-1,2,4-triazole anion. The present study of the reactivity of 3-bromo-1H-1,2,4-triazole and 3-bromo-4H-1,2,4-triazole with low-energy electrons reveals the effect of the hydrogen position on the reaction dynamics. We report energy-dependent ion yields for both molecules showing significant differences. Quantum chemical calculations reveal that heavy Br atom migration is energetically more favored than H atom migration in the case of the H atom adjacent to Br. This is enabled by the energetically favorable formation of a noncovalent complex of Br- around the triazole ring. Recently, such complexes have been reported for several other biologically relevant molecules. In the present work, we demonstrate that the position of hydrogen on the ring influences the character of the lowest resonant state and, consequently, the Br- roaming and dissociation dynamics, particularly the neutral release of hydrogen bromide.
Zobrazit více v PubMed
Wang X.; Zhang X.; Ding S. 1,2,3-Triazole-Based Sequence-Defined Oligomers and Polymers. Polym. Chem. 2021, 12, 2668–2688. 10.1039/D1PY00123J. DOI
Bonandi E.; Christodoulou M. S.; Fumagalli G.; Perdicchia D.; Rastelli G.; Passarella D. The 1,2,3-Triazole Ring as a Bioisostere in Medicinal Chemistry. Drug Discovery Today 2017, 22, 1572–1581. 10.1016/j.drudis.2017.05.014. PubMed DOI
Yadav A. K.; Jujam M.; Ghule V. D.; Dharavath S. High-Performing, Insensitive and Thermally Stable Energetic Materials From Zwitterionic Gem-dinitromethyl Substituted C-C Bonded 1,2,4-Triazole and 1,3,4-Oxadiazole. Chem. Commun. 2023, 59, 4324–4327. 10.1039/D3CC00615H. PubMed DOI
Yan T.; Ma J.; Yang H.; Cheng G. Introduction of Energetic Bis-1,2,4-Triazoles Bridges: A Strategy Towards Advanced Heat Resistant Explosives. Chem. Eng. J. 2022, 429, 13241610.1016/j.cej.2021.132416. DOI
Monapathi M. E.; Oguegbulu J. C.; Adogo L.; Klink M.; Okoli B.; Mtunzi F.; Modise J. S. Pharmaceutical Pollution: Azole Antifungal Drugs and Resistance of Opportunistic Pathogenic Yeasts in Wastewater and Environmental Water. Soil Sci. 2021, 2021, 998539810.1155/2021/9985398. DOI
Kahle M.; Buerge I. J.; Hauser A.; Müller M. D.; Poiger T. Azole Fungicides: Occurrence and Fate in Wastewater and Surface Waters. Environ. Sci. Technol. 2008, 42, 7193–7200. 10.1021/es8009309. PubMed DOI
Chen Z.-F.; Ying G.-G. Occurrence, Fate and Ecological Risk of Five Typical Azole Fungicides as Therapeutic and Personal Care Products in the Environment: A Review. Environ. Int. 2015, 84, 142–153. 10.1016/j.envint.2015.07.022. PubMed DOI
Lu M.; Zhou P.; Yang Y.; Liu J.; Jin B.; Han K. Thermochemistry and Initial Decomposition Pathways of Triazole Energetic Materials. J. Phys. Chem. A 2020, 124, 2951–2960. 10.1021/acs.jpca.9b11852. PubMed DOI
Lv M.; Wang T.; Zhou P.; He Y.; Li W.; Liu J. Theoretical Insights Into the Role of Regiochemistry in Thermal Stability Regulation of Energetic Materials. Chem. Phys. Lett. 2022, 801, 13972010.1016/j.cplett.2022.139720. DOI
Fabrikant I. I.; Eden S.; Mason N. J.; Fedor J.. Recent Progress in Dissociative Electron Attachment: From Diatomics to Biomolecules. In Advances in Atomic, Molecular, and Optical Physics; Arimondo E.; Lin C. C.; Yelin S. F., Eds.; Academic Press, 2017; Vol. 66, Chapter 9, pp 545–657.
Luxford T. F. M.; Fedor J.; Kočišek J. Electron Attachment to Tetrazoles: The Influence of Molecular Structure on Ring Opening Reactivity. J. Chem. Phys. 2021, 154, 21430310.1063/5.0052011. PubMed DOI
Sommerfeld T.; Davis M. C. Ring-opening attachment as an explanation for the long lifetime of the octafluorooxolane anion. J. Chem. Phys. 2018, 149, 08430510.1063/1.5045088. PubMed DOI
Pysanenko A.; Vinklárek I. S.; Fedor J.; Fárník M.; Bergmeister S.; Kostal V.; Nemirovich T.; Jungwirth P. Gas Phase C6H6 Anion: Electronic Stabilization by Opening of the Benzene Ring. J. Chem. Phys. 2022, 157, 22430610.1063/5.0130998. PubMed DOI
Sapunar M.; Meyer M.; Ambalampitiya H. B.; Kushner M. J.; Mašín Z. Fundamental Data for Modeling Electron-Induced Processes in Plasma Remediation of Perfluoroalkyl Substances. Phys. Chem. Chem. Phys. 2024, 26, 26037–26050. 10.1039/D4CP01911C. PubMed DOI
Saqib M.; Izadi F.; Isierhienrhien L. U.; Ončák M.; Denifl S. Decomposition of Triazole and 3-Nitrotriazole Upon Low-Energy Electron Attachment. Phys. Chem. Chem. Phys. 2023, 25, 13892–13901. 10.1039/D3CP01162C. PubMed DOI PMC
Simons J. Molecular Anions. J. Phys. Chem. A 2008, 112, 6401–6511. 10.1021/jp711490b. PubMed DOI
Jagau T.-C.; Bravaya K. B.; Krylov A. I. Extending Quantum Chemistry of Bound States to Electronic Resonances. Annu. Rev. Phys. Chem. 2017, 68, 525–553. 10.1146/annurev-physchem-052516-050622. PubMed DOI
Horáček J.; Paidarová I.; Čurík R. On a simple way to calculate electronic resonances for polyatomic molecules. J. Chem. Phys. 2015, 143, 18410210.1063/1.4935052. PubMed DOI
Davis J. U.; Sommerfeld T. Computing resonance energies directly: method comparison for a model potential. Eur. Phys. J. D 2021, 75, 316.10.1140/epjd/s10053-021-00332-z. DOI
Čurík R.; Horáček J. Determination of electronic resonances by analytic continuation using barycentric formula. Comput. Phys. Commun. 2025, 306, 10937910.1016/j.cpc.2024.109379. DOI
Suits A. G. Roaming Atoms and Radicals: a New Mechanism in Molecular Dissociation. Acc. Chem. Res. 2008, 41, 873–881. 10.1021/ar8000734. PubMed DOI
Townsend D.; Lahankar S. A.; Lee S. K.; Chambreau S. D.; Suits A. G.; Zhang X.; Rheinecker J.; Harding L.; Bowman J. M. The Roaming Atom: Straying From the Reaction Path in Formaldehyde Decomposition. Science 2004, 306, 1158–1161. 10.1126/science.1104386. PubMed DOI
Kling N. G.; Díaz-Tendero S.; Obaid R.; Disla M.; Xiong H.; Sundberg M.; Khosravi S.; Davino M.; Drach P.; Carroll A.; et al. Time-Resolved Molecular Dynamics of Single and Double Hydrogen Migration in Ethanol. Nat. Commun. 2019, 10, 281310.1038/s41467-019-10571-9. PubMed DOI PMC
Arthur-Baidoo E.; Ameixa J.; Ziegler P.; Ferreira da Silva F.; Ončák M.; Denifl S. Reactions in Tirapazamine Induced by the Attachment of Low-Energy Electrons: Dissociation Versus Roaming of OH. Angew. Chem., Int. Ed. 2020, 59, 17177–17181. 10.1002/anie.202006675. PubMed DOI PMC
Asfandiarov N. L.; Muftakhov M. V.; Pshenichnyuk S. A.; Rakhmeev R. G.; Safronov A. M.; Markova A. V.; Vorob’ev A. S.; Luxford T. F. M.; Kočišek J.; Fedor J. Non-Covalent Anion Structures in Dissociative Electron Attachment to Some Brominated Biphenyls. J. Chem. Phys. 2021, 155, 24430210.1063/5.0074013. PubMed DOI
DeVine J. A.; Weichman M. L.; Xie C.; Babin M. C.; Johnson M. A.; Ma J.; Guo H.; Neumark D. M. Autodetachment from Vibrationally Excited Vinylidene Anions. J. Phys. Chem. Lett. 2018, 9, 1058–1063. 10.1021/acs.jpclett.8b00144. PubMed DOI
Schürmann R.; Tanzer K.; Dabkowska I.; Denifl S.; Bald I. Stability of the Parent Anion of the Potential Radiosensitizer 8-Bromoadenine Formed by Low-Energy (<3 eV) Electron Attachment. J. Phys. Chem. B 2017, 121, 5730–5734. 10.1021/acs.jpcb.7b02130. PubMed DOI
Asfandiarov N.; Muftakhov M.; Rakhmeev R.; Safronov A.; Markova A.; Pshenichnyuk S. Non Covalent Bonds in Some Bromo-Substituted Aromatic Anions. J. Electron Spectrosc. Relat. Phenom. 2022, 256, 14717810.1016/j.elspec.2022.147178. DOI
Asfandiarov N. L.; Pshenichnyuk S. A.; Rakhmeyev R. G.; Tuktarov R. F.; Zaitsev N. L.; Vorob’ev A. S.; Kočišek J.; Fedor J.; Modelli A. 4-Bromobiphenyl: Long-Lived Molecular Anion Formation and Competition Between Electron Detachment and Dissociation. J. Chem. Phys. 2019, 150, 11430410.1063/1.5082611. PubMed DOI
Chomicz L.; Rak J.; Storoniak P. Electron-Induced Elimination of the Bromide Anion from Brominated Nucleobases. A Computational Study. J. Phys. Chem. B 2012, 116, 5612–5619. 10.1021/jp3008738. PubMed DOI
Sala L.; Sedmidubská B.; Vinklárek I.; Fárník M.; Schürmann R.; Bald I.; Med J.; Slavíček P.; Kočišek J. Electron Attachment to Microhydrated 4-Nitro- and 4-Bromo-Thiophenol. Phys. Chem. Chem. Phys. 2021, 23, 18173–18181. 10.1039/D1CP02019F. PubMed DOI
Stepanović M.; Pariat Y.; Allan M. Dissociative Electron Attachment in Cyclopentanone, γ-Butyrolactone, Ethylene Carbonate, and Ethylene Carbonate-d4: Role of Dipole-Bound Resonances. J. Chem. Phys. 1999, 110, 11376–11382. 10.1063/1.479078. DOI
Langer J.; Zawadzki M.; Fárník M.; Pinkas J.; Fedor J.; Kočišek J. Electron Interactions with Bis(pentamethylcyclopentadienyl)titanium(IV)-dichloride and Difluoride. Eur. Phys. J. D 2018, 72, 112.10.1140/epjd/e2018-80794-6. DOI
Stamatovic A.; Schulz G. J. Trochoidal Electron Monochromator. Rev. Sci. Instrum. 1968, 39, 1752–1753. 10.1063/1.1683220. DOI
Becke A. D. A New Mixing of Hartree-Fock and Local Density-Functional Theories. J. Chem. Phys. 1993, 98, 1372.10.1063/1.464304. DOI
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Becke A. D.; New A. Density-Functional Thermochemistry. IV. A New Dynamical Correlation Functional and Implications for Exact-Exchange Mixing. J. Chem. Phys. 1996, 104, 1040.10.1063/1.470829. DOI
Kendall R. A.; Dunning T. H.; Harrison R. J. Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96, 6796–6806. 10.1063/1.462569. DOI
Woon D. E.; Dunning T. H. Jr. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum Through Argon. J. Chem. Phys. 1993, 98, 1358–1371. 10.1063/1.464303. DOI
Frisch M. J.et al.Gaussian 16, revision C.01; Gaussian Inc.: Wallingford, CT, 2016.
Purvis G. D. III; Bartlett R. J. A Full Coupled-Cluster Singles and Doubles Model: The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910–1918. 10.1063/1.443164. DOI
Scuseria G. E.; Janssen C. L.; Schaefer H. F. An Efficient Reformulation of the Closed-Shell Coupled Cluster Single and Double Excitation (CCSD) Equations. J. Chem. Phys. 1988, 89, 7382–7387. 10.1063/1.455269. DOI
Fukui K. The Path of Chemical Reactions-the IRC Approach. Acc. Chem. Res. 1981, 14, 363–368. 10.1021/ar00072a001. DOI
Weigend F.; Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. 10.1039/b508541a. PubMed DOI
Weigend F. A Fully Direct RI-HF Algorithm: Implementation, Optimised Auxiliary Basis Sets, Demonstration of Accuracy and Efficiency. Phys. Chem. Chem. Phys. 2002, 4, 4285–4291. 10.1039/b204199p. DOI
Grimme S. Accurate Description of Van der Waals Complexes by Density Functional Theory Including Empirical Corrections. J. Comput. Chem. 2004, 25, 1463–1473. 10.1002/jcc.20078. PubMed DOI
Grimme S.; Ehrlich S.; Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI
TURBOMOLE GmbH . TURBOMOLE V7.3 2018, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007 2007http://www.turbomole.com.
Reed A. E.; Weinstock R. B.; Weinhold F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735–746. 10.1063/1.449486. DOI