Preoperative assessment of tumor consistency and gross total resection in pituitary adenoma: Radiomic analysis of T2-weighted MRI and interpretation of contributing radiomic features

. 2025 ; 5 () : 104237. [epub] 20250313

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40230387
Odkazy

PubMed 40230387
PubMed Central PMC11994910
DOI 10.1016/j.bas.2025.104237
PII: S2772-5294(25)00056-6
Knihovny.cz E-zdroje

BACKGROUND: Preoperative knowledge of tumor consistency and the likelihood of gross total resection (GTR) would greatly benefit planning of pituitary adenoma surgery, however, no reliable methods currently exist. OBJECTIVES: To evaluate the utility of radiomic analysis of MRI for predicting tumor consistency and GTR. To explore the interpretability of contributing radiomic features. METHODS: Patients undergoing first endoscopic surgery for pituitary macroadenomas were included. Tumor consistency was assessed intraoperatively, GTR was assessed based on postoperative MRI. Radiomic features were extracted from axial T2-weighted MRI. Low-variability and highly intercorrelated features were removed. Random Forest Classifiers were optimized using 70 % of patient data and evaluated on the remaining 30 %. Relative feature importance was assessed using the Gini-Simpson index. RESULTS: 542 patients were included. GTR was achieved in 325 (60.0 %) cases, firm tumors were encountered in 122 (22.5 %) cases. There was a significant correlation between GTR and tumor consistency (67.1 % vs. 35.2 %, p < 0.001). 1688 radiomic variables were extracted, 442 were removed due to low variance and 699 due to high intercorrelation. The consistency prediction model achieved an accuracy of 81.6 % and utilized 32 features, GTR prediction model achieved 79.1 % accuracy using 73 features. CONCLUSIONS: Radiomic analysis demonstrated significant potential for preoperative evaluation of pituitary adenomas. Texture and intensity-based features were the primary contributors to consistency prediction. However, the explanation of these features was insufficient. GTR prediction was predominantly driven by shape-related features. Our findings highlight the challenges of linking radiomic features to underlying tissue properties and emphasize the need for cautious interpretation.

Zobrazit více v PubMed

Alashwah M.A., Moharram M.A., Allakany A.S. Role of diffusion weighted magnetic resonance imaging DW-MRI in choice of the surgical approach for pituitary macroadenoma resection. Egypt. J Radiol Nucl Med. 2017;48(4):983–989. doi: 10.1016/j.ejrnm.2017.08.001. DOI

Alimohamadi M., Sanjari R., Mortazavi A., et al. Predictive value of diffusion-weighted MRI for tumor consistency and resection rate of nonfunctional pituitary macroadenomas. Acta Neurochir. 2014;156(12):2245–2252. doi: 10.1007/s00701-014-2259-6. PubMed DOI

Banskota S., Adamson D.C. Pituitary adenomas: from diagnosis to therapeutics. Biomedicines. 2021;9(5) doi: 10.3390/biomedicines9050494. PubMed DOI PMC

Cappelletti M., Ruggeri A.G., Spizzichino L., D'Amico A., D'avella E., Delfini R. Fibrous pituitary macroadenomas: predictive role of preoperative radiologic investigations for proper surgical planning in a cohort of 66 patients. World Neurosurg. 2019;121:e449–e457. doi: 10.1016/j.wneu.2018.09.137. PubMed DOI

Černý M., Sedlák V., Lesáková V., Francůz P., Netuka D. Methods of preoperative prediction of pituitary adenoma consistency: a systematic review. Neurosurg. Rev. 2022;46(1):11. doi: 10.1007/s10143-022-01909-x. Published 2022 Dec 9. PubMed DOI

Černý M., May J., Hamáčková L., et al. Utility of artificial intelligence in radiosurgery for pituitary adenoma: a deep learning-based automated segmentation model and evaluation of its clinical applicability. J. Neurosurg. 2024;12 Accepted December.

Chen X.Y., Ding C.Y., You H.H., et al. Relationship between pituitary adenoma consistency and extent of resection based on tumor/cerebellar peduncle T2-weighted imaging intensity (TCTI) ratio of the point on preoperative magnetic resonance imaging (MRI) corresponding to the residual point on postoperative MRI. Med. Sci. Monit. 2020;26 doi: 10.12659/MSM.919565. Published 2020 Jan 6. PubMed DOI PMC

Chowdhury T., Prabhakar H., Bithal P.K., Schaller B., Dash H.H. Immediate postoperative complications in transsphenoidal pituitary surgery: a prospective study. Saudi J. Anaesth. 2014;8(3):335–341. doi: 10.4103/1658-354X.136424. PubMed DOI PMC

Cohen-Cohen S., Helal A., Yin Z., et al. Predicting pituitary adenoma consistency with preoperative magnetic resonance elastography. J. Neurosurg. 2021;136(5):1356–1363. doi: 10.3171/2021.6.JNS204425. Published 2021 Oct 29. PubMed DOI PMC

Cuocolo R., Ugga L., Solari D., et al. Prediction of pituitary adenoma surgical consistency: radiomic data mining and machine learning on T2-weighted MRI. Neuroradiology. 2020;62(12):1649–1656. doi: 10.1007/s00234-020-02502-z. PubMed DOI PMC

Daly A.F., Beckers A. The epidemiology of pituitary adenomas. Endocrinol Metab Clin North Am. 2020;49(3):347–355. doi: 10.1016/j.ecl.2020.04.002. PubMed DOI

Ding W., Huang Z., Zhou G., Li L., Zhang M., Li Z. Diffusion-weighted imaging for predicting tumor consistency and extent of resection in patients with pituitary adenoma. Neurosurg. Rev. 2021;44(5):2933–2941. doi: 10.1007/s10143-020-01469-y. PubMed DOI

Erkan B., Barut O., Akbas A., et al. Results of endoscopic surgery in patients with pituitary adenomas : association of tumor classification grades with resection, remission, and complication rates. J Korean Neurosurg Soc. 2021;64(4):608–618. doi: 10.3340/jkns.2020.0207. PubMed DOI PMC

Fan Y., Hua M., Mou A., et al. Preoperative noninvasive radiomics approach predicts tumor consistency in patients with acromegaly: development and multicenter prospective validation. Front. Endocrinol. 2019;10:403. doi: 10.3389/fendo.2019.00403. Published 2019 Jun 28. PubMed DOI PMC

Gini C. Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle relazioni statistiche. Studi economico-giuridici pubblicati per cura della facoltà di Giurisprudenza della R. Università di Cagliari. Tipogr. di P. Cuppini. 1912 [Fasc. I]

Gondim J.A., Almeida J.P., Albuquerque L.A., Gomes E.F., Schops M. Giant pituitary adenomas: surgical outcomes of 50 cases operated on by the endonasal endoscopic approach. World Neurosurg. 2014;82(1–2):e281–e290. doi: 10.1016/j.wneu.2013.08.028. PubMed DOI

Guerra G.A., Kashif Z., Cote D.J., et al. Association between pituitary adenoma consistency, resection techniques, and patient outcomes: a single-institution experience. J. Neurosurg. 2025 doi: 10.3171/2024.8.JNS232715. Published online January 24. PubMed DOI

Guinto-Nishimura G.Y., Ramirez J., Ortega-Porcayo L.A., Marrufo-Meléndez O., Alcocer V., Ballesteros-Zebadua P., Gómez-Amador J. Accuracy of preoperative MRI for predicting tumor consistency in non-functioning pituitary adenomas. Neurosurgery. 2020;87(Suppl. 1) doi: 10.1093/neuros/nyaa447_856. DOI

Hardy J., Vezina J.L. Transsphenoidal neurosurgery of intracranial neoplasm. Adv. Neurol. 1976;15:261–273. PubMed

Heffernan A.T., Han J.K., Campbell J., et al. Predictive value of pituitary tumor morphology on outcomes and complications in endoscopic transsphenoidal surgery. World J Otorhinolaryngol Head Neck Surg. 2022;8(4):321–329. doi: 10.1002/wjo2.16. Published 2022 Mar 31. PubMed DOI PMC

Horvat N., Papanikolaou N., Koh D.M. Radiomics beyond the hype: a critical evaluation toward oncologic clinical use. Radiol Artif Intell. 2024;6(4) doi: 10.1148/ryai.230437. PubMed DOI PMC

Hughes J.D., Fattahi N., Van Gompel J., Arani A., Ehman R., Huston J., 3rd Magnetic resonance elastography detects tumoral consistency in pituitary macroadenomas. Pituitary. 2016;19(3):286–292. doi: 10.1007/s11102-016-0706-5. PubMed DOI PMC

Ibrahim A., Primakov S., Beuque M., et al. Radiomics for precision medicine: current challenges, future prospects, and the proposal of a new framework. Methods. 2021;188:20–29. doi: 10.1016/j.ymeth.2020.05.022. PubMed DOI

Iglesias P., Rodriguez Berrocal V., Diez J.J. Giant pituitary adenoma: histological types, clinical features and therapeutic approaches. Endocrine. 2018;61(3):407–421. doi: 10.1007/s12020-018-1645-x. PubMed DOI

Iuchi T., Saeki N., Tanaka M., Sunami K., Yamaura A. MRI prediction of fibrous pituitary adenomas. Acta Neurochir. 1998;140(8):779–786. doi: 10.1007/s007010050179. PubMed DOI

Jane J.A., Jr., Catalino M.P., Laws E.R., Jr. In: Surgical Treatment of Pituitary Adenomas. Feingold K.R., Anawalt B., Blackman M.R., et al., editors. Endotext; 2000.

Kamimura K., Nakajo M., Bohara M., et al. Consistency of pituitary adenoma: prediction by pharmacokinetic dynamic contrast-enhanced MRI and comparison with histologic collagen content. Cancers. 2021;13(15):3914. doi: 10.3390/cancers13153914. Published 2021 Aug 3. PubMed DOI PMC

Knosp E., Steiner E., Kitz K., Matula C. Pituitary adenomas with invasion of the cavernous sinus space: a magnetic resonance imaging classification compared with surgical findings. Neurosurgery. 1993;33(4):610–618. doi: 10.1227/00006123-199310000-00008. PubMed DOI

Lagerstrand K., Gaedes N., Eriksson S., et al. Virtual magnetic resonance elastography has the feasibility to evaluate preoperative pituitary adenoma consistency. Pituitary. 2021;24(4):530–541. doi: 10.1007/s11102-021-01129-4. PubMed DOI PMC

Li P., Zhang D., Ma S., et al. Consistency of pituitary adenomas: amounts of collagen types I and III and the predictive value of T2WI MRI. Exp. Ther. Med. 2021;22(5):1255. doi: 10.3892/etm.2021.10690. PubMed DOI PMC

Mastorakos P., Mehta G.U., Chatrath A., et al. Tumor to cerebellar peduncle T2-weighted imaging intensity ratio fails to predict pituitary adenoma consistency. J Neurol Surg B Skull Base. 2019;80(3):252–257. doi: 10.1055/s-0038-1668516. PubMed DOI PMC

Mohamed F.F., Abouhashem S. Diagnostic value of apparent diffusion coefficient (ADC) in assessment of pituitary macroadenoma consistency. Egypt J Radiol Nucl Med. 2013;44(3):617–624.

Muhammad D., Bendechache M. Unveiling the black box: a systematic review of Explainable Artificial Intelligence in medical image analysis. Comput. Struct. Biotechnol. J. 2024;24:542–560. doi: 10.1016/j.csbj.2024.08.005. Published 2024 Aug 12. PubMed DOI PMC

Naganuma H., Satoh E., Nukui H. Technical considerations of transsphenoidal removal of fibrous pituitary adenomas and evaluation of collagen content and subtype in the adenomas. Neurol. Med.-Chir. 2002;42(5):202–213. doi: 10.2176/nmc.42.202. PubMed DOI

Pierallini A., Caramia F., Falcone C., et al. Pituitary macroadenomas: preoperative evaluation of consistency with diffusion-weighted MR imaging--initial experience. Radiology. 2006;239(1):223–231. doi: 10.1148/radiol.2383042204. PubMed DOI

Romano A., Coppola V., Lombardi M., et al. Predictive role of dynamic contrast enhanced T1-weighted MR sequences in pre-surgical evaluation of macroadenomas consistency [published correction appears in Pituitary. 2017;20(2):210. doi: 10.1007/s11102-016-0774-6. Pituitary. 2017;20(2):201-209. doi:10.1007/s11102-016-0760-z. PubMed DOI

Rui W., Wu Y., Ma Z., et al. MR textural analysis on contrast enhanced 3D-SPACE images in assessment of consistency of pituitary macroadenoma. Eur. J. Radiol. 2019;110:219–224. doi: 10.1016/j.ejrad.2018.12.002. PubMed DOI

Russ S., Anastasopoulou C., Shafiq I. StatPearls. Treasure Island (FL) StatPearls Publishing; 2023. Pituitary adenoma. PubMed

Rutland J.W., Loewenstern J., Ranti D., et al. Analysis of 7-tesla diffusion-weighted imaging in the prediction of pituitary macroadenoma consistency. J. Neurosurg. 2020;134(3):771–779. doi: 10.3171/2019.12.JNS192940. Published 2020 Feb 28. PubMed DOI

Sakai N., Takehara Y., Yamashita S., et al. Shear stiffness of 4 common intracranial tumors measured using MR elastography: comparison with intraoperative consistency grading. AJNR Am J Neuroradiol. 2016;37(10):1851–1859. doi: 10.3174/ajnr.A4832. PubMed DOI PMC

Serra C., Staartjes V.E., Maldaner N., et al. Predicting extent of resection in transsphenoidal surgery for pituitary adenoma. Acta Neurochir. 2018;160(11):2255–2262. doi: 10.1007/s00701-018-3690-x. PubMed DOI

Snow R.B., Lavyne M.H., Lee B.C., Morgello S., Patterson R.H., Jr. Craniotomy versus transsphenoidal excision of large pituitary tumors: the usefulness of magnetic resonance imaging in guiding the operative approach. Neurosurgery. 1986;19(1):59–64. doi: 10.1227/00006123-198607000-00008. PubMed DOI

Thomas T., Gopalakrishnan C.V., Thomas B., Nair S. Evaluation of consistency of pituitary macroadenoma using diffusion-weighted imaging in correlation with surgical findings. Neurosurg. Q. 2014;24(2):131–135. doi: 10.1097/WNQ.0b013e31828cc38d. DOI

Traverso A., Kazmierski M., Zhovannik I., et al. Machine learning helps identifying volume-confounding effects in radiomics. Phys. Med. 2020;71:24–30. doi: 10.1016/j.ejmp.2020.02.010. PubMed DOI

van Griethuysen J.J.M., Fedorov A., Parmar C., et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104–e107. doi: 10.1158/0008-5472.CAN-17-0339. PubMed DOI PMC

Varriano G., Guerriero P., Santone A., Mercaldo F., Brunese L. Explainability of radiomics through formal methods. Comput Methods Programs Biomed. 2022;220 doi: 10.1016/j.cmpb.2022.106824. PubMed DOI

Wan T., Wu C., Meng M., et al. Radiomic features on multiparametric MRI for preoperative evaluation of pituitary macroadenomas consistency: preliminary findings. J Magn Reson Imaging. 2022;55(5):1491–1503. doi: 10.1002/jmri.27930. PubMed DOI

Wang H., Zhang W., Li S., Fan Y., Feng M., Wang R. Development and evaluation of deep learning-based automated segmentation of pituitary adenoma in clinical task. J. Clin. Endocrinol. Metab. 2021;106(9):2535–2546. doi: 10.1210/clinem/dgab371. PubMed DOI

Wei L., Lin S.A., Fan K., Xiao D., Hong J., Wang S. Relationship between pituitary adenoma texture and collagen content revealed by comparative study of MRI and pathology analysis. Int. J. Clin. Exp. Med. 2015;8(8):12898–12905. Published 2015 Aug 15. PubMed PMC

Wilson C.B. A decade of pituitary microsurgery. The Herbert Olivecrona lecture. J. Neurosurg. 1984;61:814–833. PubMed

Yamamoto J., Kakeda S., Shimajiri S., et al. Tumor consistency of pituitary macroadenomas: predictive analysis on the basis of imaging features with contrast-enhanced 3D FIESTA at 3T. AJNR Am J Neuroradiol. 2014;35(2):297–303. doi: 10.3174/ajnr.A3667. PubMed DOI PMC

Yilmaz E., Ozturk S.D., Uzuner A., et al. A single-center prospective study evaluating the relationship of tumor consistency on remission in acromegaly patients. Sci. Rep. 2025;15(1):868. doi: 10.1038/s41598-025-85331-5. Published 2025 Jan 6. PubMed DOI PMC

Yun J.J., Johans S.J., Shepherd D.J., et al. The utility of using preoperative MRI as a predictor for intraoperative pituitary adenoma consistency and surgical resection technique. J Neurol Surg B Skull Base. 2020;81(6):651–658. doi: 10.1055/s-0039-1694049. PubMed DOI PMC

Zeynalova A., Kocak B., Durmaz E.S., et al. Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI. Neuroradiology. 2019;61(7):767–774. doi: 10.1007/s00234-019-02211-2. PubMed DOI

Zhang Y.P., Zhang X.Y., Cheng Y.T., et al. Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Mil Med Res. 2023;10(1):22. doi: 10.1186/s40779-023-00458-8. Published 2023 May 16. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...