Prediction of Secondary Structure Content of Proteins Using Raman Spectroscopy and Self-Organizing Maps
Status Publisher Language English Country United States Media print-electronic
Document type Journal Article
- Keywords
- Raman spectroscopy, Secondary structure of proteins, circular dichroism spectroscopy, infrared spectroscopy, self-organizing maps,
- Publication type
- Journal Article MeSH
Proteins are biomolecules with characteristic three-dimensional (3D) arrangements that render them different vital functions. In the last 20 years, there has been a growing interest in biopharmaceutical proteins, especially antibodies, due to their therapeutic application. The functionality of a protein depends on the preservation of its native form, which under certain stressing conditions can undergo changes at different structural levels that cause them to lose their activity.1 Although mass spectrometry is a powerful technique for primary structure determination, it often fails to give information at higher order levels. Like infrared (IR), Raman spectra are well known to contain bands (especially the amide I from 1625-1725cm-1) that correlate with secondary structure (SS) content. However, unlike circular dichroism (CD), the most well-established technique for SS analysis, Raman spectroscopy allows a much wider ranges of optical density, making possible the analysis of highly concentrated samples with no prior dilution. Moreover, water is a weak scatterer below 3000 cm-1, which confers Raman an advantage over IR for the analysis of complex aqueous pharmaceutical samples as the signal from water dominates the amide I region. The most traditional procedure to extract information on SS content is band-fitting. However, in most cases, we found the method to be ambiguous, limited by spectral noise and subjected to the judgment of the analyzer. Self-organizing maps (SOM) is a type of self-learning algorithm that organizes data in a two-dimensional (2D) space based on spectral similarity and class with no bias from the analyzer and very little effect from noise. In this work, a set of protein spectra with known SS content were collected in both solid and aqueous state with back-scatter Raman spectroscopy and used to train a SOM algorithm for SS prediction. The results were compared with those by partial least squares (PLS) regression, band-fitting, and X-ray data in the literature. The prediction errors observed by SOM were comparable to those by PLS and far from those obtained by band-fitting, proving Raman-SOM as viable alternative to the aforementioned methods.
Agilent Technologies Harwell Campus UK
Botanical Resources Australia 44 46 Industrial Drive Ulverstone Tasmania 7315 Australia
Department of Chemistry University of Warwick Coventry UK
MOAC and MAS Centres for Doctoral Training University of Warwick Coventry UK
Research School of Chemistry Australian National University ACT 2603 Australia
References provided by Crossref.org