Enhancing drilling performance in 3D printed PLA implants application of PIV and ML models
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.10.03.01/00/22_003/0000048
REFRESH - Research Excellence For REgion Sustainability and High-tech Industries
CZ.10.03.01/00/22_003/0000048
REFRESH - Research Excellence For REgion Sustainability and High-tech Industries
PubMed
40246936
PubMed Central
PMC12006396
DOI
10.1038/s41598-025-96126-z
PII: 10.1038/s41598-025-96126-z
Knihovny.cz E-zdroje
Fused Deposition Modeling (FDM) is a common additive manufacturing technique known for its ability to quickly produce complex geometries and features according to customer requirements in a short timeframe. Parts produced by FDM technique with (Polylactic Acid) PLA can be used extensively as it is biocompatible in nature. The present investigation involves drilling the fabricated circular discs to assess the material removal rate (MRR) and hole profile. The inputs considered are spindle speed (SS), feed rate (fr), and drill diameter (dia), in relation to the output characteristics such as MRR, surface roughness (Ra and Rz), circularity, and cylindricity. This work employs the Proximity Indexed Value (PIV) tool to predict the near-optimal value for improving hole quality and enhancing the drilling process. In addition, Artificial neural network (ANN), Support vector machine (SVM), and Random Forest (RF) models were employed to predict the optimized results by PIV method. The tests show that the RF model, which has a R² value of 99.16%, does a better job of describing the desired outcome than the ANN model (89.45%) and the SVM model (89.08%). This also proves that the machine learning (ML) models offer better prediction to the optimization of drilling parameters with reference to the quality of the workpiece machined.
Department of Computer Science and Engineering Chennai Institute of Technology Chennai India
Faculty of Mechanical Engineering Opole University of Technology Proszkowska 76 45 758 Opole Poland
Zobrazit více v PubMed
Balaji, D. et al. Additive Manufacturing for Aerospace from Inception to Certification. J. Nanomater. (2022). (2022).
Jiménez, M., Romero, L., Domínguez, I. A., Espinosa, M. D. M. & Domínguez, M. Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects. Complexity (2019). (2019).
Ramesh, M., Niranjana, K., Bhoopathi, R. & Rajeshkumar, L. Additive manufacturing (3D printing) technologies for fiber-reinforced polymer composite materials: A review on fabrication methods and process parameters. E-Polymers 24, (2024).
Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q. & Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. Part. B Eng.143, 172–196 (2018).
Bhuvaneswari, V. & Balaji Devarajan, L. R. Additive Manufacturing of Hydrogels:process and properties. in Additive Manufacturing with Novel Materials: Processes, Properties and Applications (ed. R. Rajasekar, C. Moganapriya, P. S. K.)wiley, (2024). 10.1002/9781394198085.ch9
Vaneker, T., Bernard, A., Moroni, G. & Gibson, I. Z. Design for additive manufacturing: framework and methodology. CIRP Ann.69, 578–599 (2020).
Wazeer, A. et al. Additive manufacturing in biomedical field: a critical review on fabrication method, materials used, applications, challenges, and future prospects. Progress in Additive Manufacturing vol. 8Springer International Publishing, (2023).
Balaji Devarajan, R., LakshmiNarasimhan, B., Venkateswaran, S. M. & Rangappa, S. S. Additive manufacturing of jute fiber reinforced polymer composites: A concise review of material forms and methods. Polym. Compos.43, (2022).
Rajan, K., Samykano, M., Kadirgama, K., Harun, W. S. W. & Rahman, M. M. Fused deposition modeling: process, materials, parameters, properties, and applications. International Journal of Advanced Manufacturing Technology vol. 120Springer London, (2022).
Kristiawan, R. B., Imaduddin, F., Ariawan, D., Arifin, Z. & Ubaidillah & A review on the fused deposition modeling (FDM) 3D printing: filament processing, materials, and printing parameters. Open. Eng.11, 639–649 (2021).
Madhan Kumar, A. & Jayakumar, K. Mechanical and drilling characterization of biodegradable PLA particulate green composites. J. Chin. Inst. Eng. Trans. Chin. Inst. Eng. A. 45, 437–452 (2022).
Ebrahimi, F. & Ramezani Dana, H. Poly lactic acid (PLA) polymers: from properties to biomedical applications. Int. J. Polym. Mater. Polym. Biomater.71, 1117–1130 (2022).
Baraheni, M., Shabgard, M. R. & Amini, S. Experimental evaluation and optimization of parameters affecting delamination, geometrical tolerance and surface roughness in ultrasonic drilling of 3D-Printed PLA thermoplastic. J. Thermoplast Compos. Mater.10.1177/08927057241264803 (2024).
Mohammadreza Lalegani Dezaki, M. K. A. M. A. & B. T. H. T. B. Experimental Study of Drilling 3D Printed Polylactic Acid (PLA) in FDM Process. in Fused Deposition modeling based 3D printing (2021).
Borysiuk, P. et al. A study on the susceptibility of PLA biocomposites to drilling. Forests13, 1–10 (2022).
Wang, J., Zhu, R., Liu, Y. & Zhang, L. Understanding melt pool characteristics in laser powder bed fusion: an overview of single- and multi-track melt pools for process optimization. Adv. Powder Mater.2, (2023).
Shanmugam, V. et al. The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polym. Test.93, 106925 (2021).
Franz, G., Vantomme, P. & Hassan, M. H. A Review on Drilling of Multilayer Fiber-Reinforced Polymer Composites and Aluminum Stacks: Optimization of Strategies for Improving the Drilling Performance of Aerospace Assemblies. Fibers 10, (2022).
Sivaprasath, V. & Senthilkumar, N. Maximizing MRR during drilling PLA + CF biocomposite with Spade drill and comparing the results with twist drill using statistical approach. Mater. Today Proc.69, 1242–1246 (2022).
Popescu, D., Gheorghe Amza, C., Marinescu, R. & Cristiana Iacob, M. & Luminiţa Căruţaşu, N. Investigations on factors affecting 3D-Printed holes dimensional accuracy and repeatability. Appl. Sci.13, (2023).
Ross, N. S., Ananth, M. B. J., Jafferson, J. M., Rajeshkumar, L. & Kumar, M. S. Performance assessment of vegetable oil–based MQL in milling of additively manufactured AlSi10Mg for sustainable production. Biomass Convers. Biorefinery. 10.1007/s13399-022-02967-3 (2022).
Spitaels, L., Nieto Fuentes, E., Rivière-Lorphèvre, E., Arrazola, P. J. & Ducobu, F. A systematic method for assessing the machine performance of material extrusion printers. J. Manuf. Mater. Process.8, (2024).
Stavropoulos, P., Tzimanis, K., Souflas, T. & Bikas, H. Knowledge-based manufacturability assessment for optimization of additive manufacturing processes based on automated feature recognition from CAD models. Int. J. Adv. Manuf. Technol.122, 993–1007 (2022).
Huang, D. J. & Li, H. A machine learning guided investigation of quality repeatability in metal laser powder bed fusion additive manufacturing. Mater. Des.203, 109606 (2021).
Pimenov, D. Y. et al. Resource saving by optimization and machining environments for sustainable manufacturing: A review and future prospects. Renew. Sustain. Energy Rev.166, 112660 (2022).
Krishnakumar, P., Rameshkumar, K. & Ramachandran, K. I. Tool wear condition prediction using vibration signals in high speed machining (HSM) of titanium (Ti-6Al-4V) alloy. Procedia Comput. Sci.50, 270–275 (2015).
Ross, N. S., Sivaraman, V., Ananth, M. B. J. & Jebaraj, M. Multi response optimization of dual jet CO2 + SQL in milling inconel 718. Mater. Manuf. Process.38, 722–734 (2023).
Sahoo, S. K. & Goswami, S. S. A comprehensive review of multiple criteria Decision-Making (MCDM) methods: advancements, applications, and future directions. Decis. Mak. Adv.1, 25–48 (2023).
Tamilselvan, S., Dhanalakshmi, G. & Balaji, D. Application-Based review of soft computational methods to enhance industrial practices abetted by the patent landscape analysis. Wiley Interdiscip Rev. Data Min. Knowl. Discov. 10.1002/widm.1564 (2024).
Danielson, M. & Ekenberg, L. Comparing Cardinal and Ordinal Ranking in MCDM Methods. in Multicriteria and Optimization Models for Risk, Reliability, and Maintenance Decision Analysis. (ed. de Almeida, A.T., Ekenberg, L., Scarf, P., Zio, E., & Zuo, M. J.) (Springer).
Danielson, M. & Ekenberg, L. Innovation for Systems Information and Decision. In Innovation for Systems Information and Decision (Springer Nature Singapore, 2021).
Chergui, Z. & Jiménez-Martín, A. On ordinal Information-Based weighting methods and comparison analyses. Information15, 527 (2024).
Chakraborty, S. & Chakraborty, S. A scoping review on the applications of MCDM techniques for parametric optimization of machining processes. Arch. Comput. Methods Eng.29, 4165–4186 (2022).
Priyadharshini, M. et al. Fiber reinforced composite manufacturing with the aid of artificial Intelligence – A State-of-the-Art review. Arch. Comput. Methods Eng.29, 5511–5524 (2022).
Saluja, R. S., Mathew, M. & Singh, V. Improved proximity indexed value MCDM method for solving the rank reversal problem: A Simulation-Based approach. Arab. J. Sci. Eng.48, 11679–11694 (2023).
Mufazzal, S., Khan, N. Z., Muzakkir, S. M., Siddiquee, A. N. & Khan, Z. A. A new fuzzy multi-criteria decision-making method based on proximity index value. J. Ind. Prod. Eng.39, 42–58 (2021).
Zhang, X., Tnay, G. L., Liu, K. & Kumar, A. S. Effect of apex offset inconsistency on hole straightness deviation in deep hole gun drilling of inconel 718. Int. J. Mach. Tools Manuf.125, 123–132 (2018).
Verma, R. K., Singh, V. K., Singh, D. K. & Kharwar, P. K. Experimental investigation on surface roughness and circularity error during drilling of polymer nanocomposites. Mater. Today Proc.44, 2501–2506 (2021).
Fernandez-Vidal, S. R., Fernandez-Vidal, S., Batista, M. & Salguero, J. Tool wear mechanism in cutting of stack CFRP/UNS A97075. Mater. (Basel)11, (2018). PubMed PMC
KARTAL, F. & KAPTAN, A. Influence of abrasive water jet turning operating parameters on surface roughness of abs and Pla 3D printed parts materials. Int. J. 3D Print. Technol. Digit. Ind.7, 184–190 (2023).
Gupta, M. K. et al. Tribological and surface morphological characteristics of titanium alloys: a review. Arch. Civ. Mech. Eng.22, (2022).
Sivalingam, V. et al. Identification of tool wear and surface morphology measurements in sustainable milling of al 6082 hybrid metal matrix composite. J. Mater. Res. Technol.27, 7570–7581 (2023).
El Mehtedi, M., Buonadonna, P., El Mohtadi, R., Aymerich, F. & Carta, M. Surface quality related to machining parameters in 3D-printed PETG components. Procedia Comput. Sci.232, 1212–1221 (2024).
Cloëz, L. et al. Machinabilty of PLA obtained by injection molding under a dry milling process. (2024).
Shekhar, N. & Mondal, A. Synthesis, properties, environmental degradation, processing, and applications of polylactic acid (PLA): an overview. Polym. Bull.81, 11421–11457 (2024).
Lotfi, A., Li, H. & Dao, D. V. Analytical and experimental investigation of the parameters in drilling flax/poly(lactic acid) bio-composite laminates. Int. J. Adv. Manuf. Technol.109, 503–521 (2020).
Duc Trung, D. A combination method for multi-criteria decision making problem in turning process. Manuf. Rev.8, (2021).
Jurkovic, Z., Cukor, G., Brezocnik, M. & Brajkovic, T. A comparison of machine learning methods for cutting parameters prediction in high speed turning process. J. Intell. Manuf.29, 1683–1693 (2018).
Ross, N. S. et al. Carbon emissions and overall sustainability assessment in eco-friendly machining of Monel-400 alloy. Sustain. Mater. Technol.37, (2023).
Mia, M. et al. Prediction and optimization of surface roughness in minimum quantity coolant lubrication applied turning of high hardness steel. 118, 43–51 (2018).
Ross, N. S. et al. Enhancing surface quality and tool life in SLM-machined components with Dual-MQL approach. J. Mater. Res. Technol.31, 1837–1852 (2024).
Ross, N. S., Sheeba, P. T., Jebaraj, M. & Stephen, H. Milling performance assessment of Ti-6Al-4V under CO2 cooling utilizing coated AlCrN/TiAlN insert. Mater. Manuf. Process.37, 327–341 (2022).
Danish, M. et al. Machine learning models for prediction and classification of tool wear in sustainable milling of additively manufactured 316 stainless steel. Results Eng.22, 102015 (2024).