Release of Microplastic Fibers from Polyester Knit Fleece during Abrasion, Washing, and Drying

. 2025 Apr 15 ; 10 (14) : 14241-14249. [epub] 20250331

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40256517

Today, microplastics are found in soil, air, and all water sources, including rivers, groundwater, and treated drinking water, with the majority originating from wastewater produced during the washing process. The aim of this study is to determine how standard washing, drying, and wearing simulated by mechanical abrasion of 100% polyester multifilament fleece knitted fabrics contribute to the release and formation of microplastics and fibrous fragments by determining changes in their total weight, thickness, dimensions, and relative surface area. In addition, a new textile surface evaluation methodology was developed to assess the cover area (cover ratio) of released microplastic fibers trapped on the treated fabric surface. The standard and new methods confirmed that the amount of microplastic fibers released from the fleece fabric increased continuously until the third to fifth washing cycle, after which the released amount was nearly constant. Furthermore, a large proportion of the released microplastic fibers was shown to have originated as residue from the manufacturing process. We recommend that (i) washing machines should include a 25 × 30 μm mesh fabric filter to reduce the number of microplastic fibers released down the drain, (ii) flat textiles should be prewashed in the factory, thereby effectively capturing the more significant part of fibers released during the first washing cycle, (iii) the construction and properties of fleece fabrics should be improved to meet environmental requirements, and (iv) the newly developed method for analyzing the cover area of loose fibers on fabric surfaces can be more widely used for quality control.

Zobrazit více v PubMed

Fournier E.; Etienne-Mesmin L.; Grootaert C.; Jelsbak L.; Syberg K.; Blanquet-Diot S.; Mercier-Bonin M. Microplastics in the human digestive environment: A focus on the potential and challenges facing in vitro gut model development. J. Hazard. Mater. 2021, 415, 125632.10.1016/j.jhazmat.2021.125632. PubMed DOI

Prata J. C.; da Costa J. P.; Lopes I.; Duarte A. C.; Rocha-Santos T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455.10.1016/j.scitotenv.2019.134455. PubMed DOI

Ragusa A.; Svelato A.; Santacroce C.; Catalano P.; Notarstefano V.; Carnevali O.; Papa F.; Rongioletti M. C. A.; Baiocco F.; Draghi S.; D’Amore E.; Rinaldo D.; Matta M.; Giorgini E. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274.10.1016/j.envint.2020.106274. PubMed DOI

Dils E.ETC/CE Report 1/2022: microplastic Pollution From Textile Consumption In Europe; European Environment Information and Observation Network. 2022, 61.

Li Z.; Zheng Y.; Maimaiti Z.; Fu J.; Yang F.; Li Z. Y.; Shi Y.; Hao L. B.; Chen J. Y.; Xu C. Identification and analysis of microplastics in human lower limb joints. J. Hazard. Mater. 2024, 461, 132640.10.1016/j.jhazmat.2023.132640. PubMed DOI

Browne M. A.; Crump P.; Niven S. J.; Teuten E.; Tonkin A.; Galloway T.; Thompson R. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. 10.1021/es201811s. PubMed DOI

Miller R. Z.; Watts A. J. R.; Winslow B. O.; Galloway T. S.; Barrows A. P. W. Mountains to the sea: river study of plastic and non-plastic microfiber pollution in the northeast USA. Mar. Pollut. Bull. 2017, 124, 245.10.1016/j.marpolbul.2017.07.028. PubMed DOI

Barrick A.; Boardwine A. J.; Hoang T. C. Accumulation, depuration, and potential effects of environmentally representative microplastics towards Daphnia magna. Sci. Total Environ. 2024, 950, 175384.10.1016/j.scitotenv.2024.175384. PubMed DOI

Andrady A. L. The plastic in microplastics: A review. Mar. Pollut. Bull. 2017, 119, 12–22. 10.1016/j.marpolbul.2017.01.082. PubMed DOI

Geyer R.; Jambeck J. R.; Law K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3 (7), e170078210.1126/sciadv.1700782. PubMed DOI PMC

Allen E.; Henninger C. E.; Garforth A.; Asuquo E. Microfiber Pollution: A Systematic Literature Review to Overcome the Complexities in Knit Design to Create Solutions for Knit Fabrics. Environ. Sci. Technol. 2024, 58 (9), 4031–4045. 10.1021/acs.est.3c05955. PubMed DOI PMC

Hossain M. S.; Islam M. M.; Dey S. C.; Hasan N. An approach to improve the pilling resistance properties of three thread polyester cotton blended fleece fabric. Heliyon 2021, 7, e0692110.1016/j.heliyon.2021.e06921. PubMed DOI PMC

Miller M. E.; Hamann M.; Kroon F. J. Bioaccumulation and biomagnification of microplastics in marine organisms: A review and meta-analysis of current data. PLoS One 2020, 15 (10), 0240792.10.1371/journal.pone.0240792. PubMed DOI PMC

Barrick A.; Boardwine A. J.; Nguyen N. H.; Sevcu A.; Novotna J.; Hoang T. C. Acute toxicity of natural and synthetic clothing fibers towards Daphnia magna: Influence of fiber type and morphology. Sci. Total Environ. 2025, 967, 178751.10.1016/j.scitotenv.2025.178751. PubMed DOI

Periyasamy A. P.; Tehrani-Bagha A. A review on microplastic emission from textile materials and its reduction techniques. Polym. Degrad. Stab. 2022, 199, 109901.10.1016/j.polymdegradstab.2022.109901. DOI

Cui H.; Xu C. Study on the Relationship between Textile Microplastics Shedding and Fabric Structure. Polymers 2022, 14, 5309.10.3390/polym14235309. PubMed DOI PMC

Yan S.; Jones C.; Henninger C. E.; McCormick H.. Sustainability in the Textile and Apparel Industries. Sourcing Synthetic and Novel Alternative Raw Materials, Muthu S. S.; Gardetti M. A. Eds.; Springer Cham, 2020; pp. 157–171. DOI: 10.1007/978-3-030-38013-7. DOI

Carney Almroth B. M.; Åström L.; Roslund S.; Petersson H.; Johansson M.; Persson N.-K. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environ. Sci. Pollut. Res. 2018, 25, 1191–1199. 10.1007/s11356-017-0528-7. PubMed DOI PMC

Pinlova B.; Hufenus R.; Nowack B. Systematic study of the presence of microplastic fibers during polyester yarn production. J. Cleaner Prod. 2022, 363, 132247.10.1016/j.jclepro.2022.132247. DOI

Hosseini Ravandi S.; Valizadeh M. Properties of fibers and fabrics that contribute to human comfort. Improv. Comf. Clothing 2011, 61–78. 10.1533/9780857090645.1.61. DOI

Militky J.Handbook of Tensile Properties of Textile and Technical Fibres; Bunsell A. R., Eds.; Elsevier Inc, 2009; pp. 223–314.

Militký J.; Novotná J.; Wiener J.; Křemenáková D.; Venkataraman M. Microplastics and Fibrous Fragments Generated during the Production and Maintenance of Textiles. Fibers 2024, 12, 51.10.3390/fib12070051. DOI

Nowack B.; Cai Y.; Mitrano D. M.; Hufenus R. Formation of fiber fragments during abrasion of polyester textiles. Environ. Sci. Technol. 2021, 55, 8001–8009. 10.1021/acs.est.1c00650. PubMed DOI

Militký J. T.Textile Fibers, 1st ed.; Technical University of Liberec: Liberec, 2012. pp 374. st ed.

Lant N. J.; Hayward A. S.; Peththawadu M. M. D.; Sheridan K. J.; Dean J. R. Microfiber release from real soiled consumer laundry and the impact of fabric care products and washing conditions. PLoS One 2020, 15, e023333210.1371/journal.pone.0233332. PubMed DOI PMC

Zambrano M. C.; Pawlak J. J.; Daystar J.; Ankeny M.; Cheng J. J.; Venditti R. A. Microfibers generated from the laundering of cotton, rayon and polyester based fabrics and their aquatic biodegradation. Mar. Pollut. Bull. 2019, 142, 394–407. 10.1016/j.marpolbul.2019.02.062. PubMed DOI

Nayak R.; Jajpura L.; Khandual A. Traditional fibres for fashion and textiles: Associated problems and future sustainable fibres. Sustainable Fibres Fashion Textile Manufacturing 2023, 3–25. 10.1016/B978-0-12-824052-6.00013-5. DOI

Cai Y.; Mitrano D. M.; Heuberger M.; Hufenus R.; Nowack B. The origin of microplastic fiber in polyester textiles: The textile production process matters. J. Cleaner Prod. 2020, 267, 121970.10.1016/j.jclepro.2020.121970. DOI

Yang T.; Luo J.; Nowack B. Characterization of Nanoplastics, Fibrils, and Microplastics Released during Washing and Abrasion of Polyester Textiles. Environ. Sci. Technol. 2021, 55, 15873–15881. 10.1021/acs.est.1c04826. PubMed DOI

Pirc U.; Vidmar M.; Mozer A.; Kržan A. Emissions of microplastic fibers from microfiber fleece during domestic washing. Environ. Sci. Pollut. Res. 2016, 23, 22206–22211. 10.1007/s11356-016-7703-0. PubMed DOI PMC

Hernandez E.; Nowack B.; Mitrano D. M. Polyester Textiles as a Source of Microplastics from Households: A Mechanistic Study to Understand Microfiber Release During Washing. Environ. Sci. Technol. 2017, 51 (12), 7036–7046. 10.1021/acs.est.7b01750. PubMed DOI

Kärkkäinen N.; Sillanpää M. Quantification of different microplastic fibres discharged from textiles in machine wash and tumble drying. Environ. Sci. Pollut. Res. 2021, 28, 16253–16263. 10.1007/s11356-020-11988-2. PubMed DOI PMC

Wang C.; Chen W.; Zhao H.; Tang J.; Li G.; Zhou Q.; Sun J.; Xing B. Microplastic Fiber Release by Laundry: A Comparative Study of Hand-Washing and Machine-Washing. ACS EST Water 2023, 1, 147–155. 10.1021/acsestwater.2c00462. DOI

Cai Y.; Yang T.; Mitrano D. M.; Heuberger M.; Hufenus R.; Nowack B. Systematic Study of Microplastic Fiber Release from 12 Different Polyester Textiles during Washing. Environ. Sci. Technol. 2020, 54, 4847–4855. 10.1021/acs.est.9b07395. PubMed DOI

Henry B.; Laitala K.; Klepp I. Microfibers from apparel and home textiles: Prospects for including microplastics in environmental sustainability assessment. Sci. Total Environ. 2019, 652, 483.10.1016/j.scitotenv.2018.10.166. PubMed DOI

Kelly M. R.; Lant N. J.; Kurr M.; Burgess J. G. Importance of Water-Volume on the Release of Microplastic Fibers from Laundry. Environ. Sci. Technol. 2019, 53, 11735–11744. 10.1021/acs.est.9b03022. PubMed DOI

Novotná J.; Wiener J.. Release of microfibers during washing and drying; In Aachen Dresden Denkendorf International Textile Conference, 2023. pp. 59–64.

Cummins A. M.; Malekpour A. K.; Smith A. J.; Lonsdale S.; Dean J. R.; Lant N. J. Impact of vented and condenser tumble dryers on waterborne and airborne microfiber pollution. PLoS One 2023, 18, e028554810.1371/journal.pone.0285548. PubMed DOI PMC

De Falco F.; Gentile G.; Di Pace E.; Avella M.; Cocca M. Quantification of microfibres released during washing of synthetic clothes in real conditions and at lab scale. Eur. Phys. J. Plus 2018, 133 (7), 257.10.1140/epjp/i2018-12123-x. DOI

Tao D.; Zhang K.; Xu S.; Lin H.; Liu Y.; Kang J.; Yim T.; Giesy J. P.; Leung K. M. Y. Microfibers Released into the Air from a Household Tumble Dryer. Environ. Sci. Technol. Lett. 2022, 9 (2), 120–126. 10.1021/acs.estlett.1c00911. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...