Sixty years of research on photosynthesis: a personal scientific autobiography
Language English Country Czech Republic Media electronic-ecollection
Document type Journal Article, Historical Article, Autobiography
PubMed
40270905
PubMed Central
PMC12012424
DOI
10.32615/ps.2025.002
PII: PS63010
Knihovny.cz E-resources
- Keywords
- CO2-concentrating mechanism (CCM), Kazuo Shibata, NDH-I complexes, Riken (The Institute of Physical and Chemical Research), cyanobacteria, stomata,
- MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Photosynthesis * physiology MeSH
- Cyanobacteria metabolism MeSH
- Research * history MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Publication type
- Autobiography MeSH
- Journal Article MeSH
- Historical Article MeSH
The following scientific autobiography is presented here as a homage to Professor Kazuo Shibata, who is the one who led me to do research in photosynthesis. He had invited me to Riken (The Institute of Physical and Chemical Research), and had launched the Japan-US Collaboration Project on "The Solar Energy Conversion by Means of Photosynthesis" and had invited many international scientists to Riken. My research, under Shibata, started on using a sensitive method for the determination of chlorophyll b, and of SDS-PAGE for the pigment protein complexes of the two photosystems. After Shibata had passed away at the age of 66, I found post-illumination CO2 burst from cyanobacterial cell suspensions. This finding led me to study the CO2-concentrating mechanism (CCM) and the function and structure of NADP(H) dehydrogenase complexes (NDH-I) in cyanobacteria, which were developed after I had moved to Nagoya University, and in several other laboratories in the world after I had retired from Nagoya University.
See more in PubMed
Arteni A.A., Zhang P., Battchikova N. et al..: Structural characterization of NDH-1 complexes of Thermosynechococcus elongatus by single particle electron microscopy. – BBA-Bioenergetics 1757: 1469-1475, 2006. 10.1016/j.bbabio.2006.05.042 PubMed DOI
Battchikova N., Zhang P., Rudd S. et al..: Identification of NdhL and Ssl1690 (NdhO) in NDH-1L and NDH-1M complexes of Synechocystis sp. PCC 6803. – J. Biol. Chem. 280: 2587-2595, 2005. 10.1074/jbc.M410914200 PubMed DOI
Bernát G., Appel J., Ogawa T., Rögner M.: Distinct roles of multiple NDH-1 complexes in the cyanobacterial electron transport network as revealed by kinetic analysis of P700+ reduction in various ndh-deficient strains of Synechocystis sp. PCC6803. – J. Bacteriol. 193: 292-295, 2011. 10.1128/jb.00984-10 PubMed DOI PMC
Boardman N.K.: My journey to photosynthesis. – Photosynth. Res. 157: 159-170, 2023. 10.1007/s11120-023-01021-1 PubMed DOI
Boardman N.K., Anderson J.M.: Isolation from spinach chloroplasts of particles containing different proportions of chlorophyll a and chlorophyll b and their possible role in the light reactions of photosynthesis. – Nature 203: 166-167, 1964. 10.1038/203166a0 DOI
Folea I.M., Zhang P., Nowaczykc M.M. et al..: Single particle analysis of thylakoid proteins from Thermosynechococcus elongatus and Synechocystis 6803: Localization of the CupA subunit of NDH-1. – FEBS Lett. 582: 249-254, 2008. 10.1016/j.febslet.2007.12.012 PubMed DOI
Govindjee G., Malkin R., Ogawa T.: Bacon Ke (1920–2022): a pioneer of primary photochemistry of photosynthesis. – Photosynthetica 60: 360-361, 2022. 10.32615/ps.2022.026 DOI
Govindjee G., Nonomura A., Lichtenthaler H.K.: Remembering Melvin Calvin (1911–1997), a highly versatile scientist of the 20th century. – Photosynth. Res. 143: 1-11, 2020. 10.1007/s11120-019-00693-y PubMed DOI
Govindjee, Fork D.C.: Charles Stacy French (1907–1995). – In: Biographical Memoirs. Vol. 88. Pp. 2-29. National Academy of Sciences, Washington: 2006. https://www.nasonline.org/wp-content/uploads/2024/06/french-c-stacy.pdf
Hangarter R.P., Ort D.R.: Obituary. Norman E. Good (1917–1992). – Photosynth. Res. 34: 245-247, 1992. 10.1007/BF00033441 DOI
Hiyama T., Ke B.: A new photosynthetic pigment, “P430”: its possible role as the primary electron acceptor of photosystem I. – PNAS 68: 1010-1013, 1971. 10.1073/pnas.68.5.1010 PubMed DOI PMC
Iino M., Ogawa T., Zeiger E.: Kinetic properties of the blue-light response of stomata. – PNAS 82: 8019-8023, 1985. 10.1073/pnas.82.23.8019 PubMed DOI PMC
Inoue Y.: Manganese catalyst as a possible cation carrier in thermoluminescence from green plants. – FEBS Lett. 72: 279-282, 1976. 10.1016/0014-5793(76)80986-6 PubMed DOI
Inoue Y., Yamashita T., Kobayashi Y., Shibata K.: Thermoluminescence changes during inactivation and reactivation of the oxygen-evolving system in isolated chloroplasts. – FEBS Lett. 82: 303-306, 1977. 10.1016/0014-5793(77)80607-8 PubMed DOI
Kaplan A., Badger M.R., Berry J.A.: Photosynthesis and the intracellular carbon pool in the bluegreen alga Anabaena variabilis: Response to external CO2 concentration. – Planta 149: 219-226, 1980. 10.1007/BF00384557 PubMed DOI
Kaplan A., Hagemann M., Bauwe H. et al.: Carbon acquisition by cyanobacteria: Mechanisms, comparative genomics, and evolution. – In: Herrero A., Flores E. (ed.): The Cyanobacteria: Molecular Biology, Genomics and Evolution. Pp. 305-334. Caister Academic Press, Norfolk: 2008.
Katoh H., Grossman A.R., Hagino N., Ogawa T.: A gene of Synechocystis sp. strain PCC6803 encoding novel iron transporter. – J. Bacteriol. 182: 6523-6524, 2000. 10.1128/jb.182.22.6523-6524.2000 PubMed DOI PMC
Liu J., Zheng F., Xu M. et al..: CupAR negatively controls the key protein CupA in the carbon acquisition complex NDH–1MS in Synechocystis sp. PCC 6803. – J. Biol. Chem. 300: 107716, 2024. 10.1016/j.jbc.2024.107716 PubMed DOI PMC
Mi H., Endo T., Schreiber U. et al..: Electron donation from cyclic and respiratory flows to photosynthetic intersystem chain is mediated by pyridine nucleotid dehydrogenase in the cyanobacterium Synechocystis PCC 6803. – Plant Cell Physiol. 33: 1233-1237, 1992. 10.1093/oxfordjournals.pcp.a078378 DOI
Mi H., Endo T., Schreiber U. et al..: NAD(P)H dehydrogenase-dependent cyclic electron flow around photosystem I in the cyanobacterium Synechocystis PCC6803: A study of dark-starved cells and spheroplasts. – Plant Cell Physiol. 35: 163-173, 1994. 10.1093/oxfordjournals.pcp.a078580 DOI
Nonomura A.M., Holtz B., Biel K.Y. et al..: The paths of Andrew A. Benson: a radio-autobiography. – Photosynth. Res. 134: 93-105, 2017. 10.1007/s11120-017-0410-y PubMed DOI
Ogawa T.: Two steps of gas exchange in leaf photosynthesis. – Physiol. Plantarum 35: 91-95, 1975. 10.1111/j.1399-3054.1975.tb03874.x DOI
Ogawa T.: Simple oscillations in photosynthesis of higher plants. – BBA-Bioenergetics 681: 103-109, 1982. 10.1016/0005-2728(82)90283-3 DOI
Ogawa T.: Mutants of Synechocystis PCC 6803 defective in inorganic carbon transport. – Plant Physiol. 94: 760-765, 1990. 10.1104/pp.94.2.760 PubMed DOI PMC
Ogawa T.: A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC 6803. – PNAS 88: 4275-4279, 1991. 10.1073/pnas.88.10.4275 PubMed DOI PMC
Ogawa T.: Identification and characterization of the ictA/ndhL gene product essential to inorganic carbon transport of Synechocystis PCC6803. – Plant Physiol. 99: 1604-1608, 1992. 10.1104/pp.99.4.1604 PubMed DOI PMC
Ogawa T.: Physical separation of chlorophyll-protein complexes. – Photosynth. Res. 76: 227-232, 2003. 10.1023/A:1024943228292 PubMed DOI
Ogawa T., Bao D.H., Katoh H. et al..: A two-component signal transduction pathway regulates manganese homeostasis in Synechocystis 6803, a photosynthetic organism. – J. Biol. Chem. 277: 28981-28986, 2002. 10.1074/jbc.M204175200 PubMed DOI
Ogawa T., Grantz D., Boyer J., Govindjee: Effects of cations and abscisic acid on chlorophyll a fluorescence in guard cells of Vicia faba. – Plant Physiol. 69: 1140-1144, 1982. 10.1104/pp.69.5.1140 PubMed DOI PMC
Ogawa T., Inoue Y.: Photosystem-1 initiated postillumination CO2 burst in a cyanobacterium, Anabaena variabilis. – BBA-Bioenergetics 724: 490- 493, 1983. 10.1016/0005-2728(83)90110-X DOI
Ogawa T., Ishikawa H., Shimada K., Shibata K.: Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. – Planta 142: 61-65, 1978. 10.1007/BF00385121 PubMed DOI
Ogawa T., Kanai R., Shibata K.: Distribution of carotenoids in the two photochemical systems of higher plants and algae. – In: Shibata K., Takamiya A., Jagendorf A.T., Fuller R.C. (ed.): Comparative Biochemistry and Biophysics of Photosynthesis. Pp. 22-35. University of Tokyo Press, Tokyo: 1968. https://archive.org/details/dli.ernet.211935/page/23/mode/2up
Ogawa T., Obata F., Shibata K.: Two pigment proteins in spinach chloroplasts. – BBA-Biophysics 112: 223-234, 1966. 10.1016/0926-6585(66)90323-2 PubMed DOI
Ogawa T., Ogren W.L.: Action spectra for accumulation of inorganic carbon in the cyanobacterium, Anabaena variabilis. – Photochem. Photobiol. 41: 583-587, 1985. 10.1111/j.1751-1097.1985.tb03530.x DOI
Ogawa T., Shibata K.: A sensitive method for determining chlorophyll b in plant extracts. – Photochem. Photobiol. 4: 193-200, 1965. 10.1111/j.1751-1097.1965.tb05736.x DOI
Ogawa T., Shibata K.: A simple porometer for precise recording of leaf resistance. – Plant Cell Physiol. 14: 1039-1043, 1973. 10.1093/oxfordjournals.pcp.a074921 DOI
Ogawa T., Vernon L.P.: A fraction from Anabaena variabilis enriched in the reaction center chlorophyll P700. – BBA-Bioenergetics 180: 334-346, 1969. 10.1016/0005-2728(69)90118-2 PubMed DOI
Ogawa T., Vernon L.P., Mollenhauer H.H.: Properties and structure of fractions prepared from Anabaena variabilis by the use of Triton X-100. – BBA-Bioenergetics 172: 216-229, 1969. 10.1016/0005-2728(69)90065-6 PubMed DOI
Ohkawa H., Pakrasi H.B., Ogawa T.: Two types of functionally distinct NAD(P)H dehydrogenases in Synechocystis sp. strain PCC6803. – J. Biol. Chem. 275: 31630-31634, 2000. 10.1074/jbc.M003706200 PubMed DOI
Omata T., Ogawa T.: Biosynthesis of a 42-kD polypeptide in the cytoplasmic membrane of the cyanobacterium Anacystis nidulans strain R2 during adaptation to low CO2 concentration. – Plant Physiol. 80: 525-530, 1986. 10.1104/pp.80.2.525 PubMed DOI PMC
Omata T., Ohmori M., Arai N., Ogawa T.: Genetically engineered mutant of the cyanobacterium Synechococcus PCC 7942 defective in nitrate transport. – PNAS 86: 6612-6616, 1989. 10.1073/pnas.86.17.6612 PubMed DOI PMC
Omata T., Price G.D., Badger M.R. et al..: Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp. strain PCC 7942. – PNAS 96: 13571-13576, 1999. 10.1073/pnas.96.23.13571 PubMed DOI PMC
Pakrasi H., Ogawa T., Bhattacharrya-Pakrasi M.: Transport of metals: A key process in oxygenic photosynthesis. – In: Aro E.-M., Andersson B. (ed.): Regulation of Photosynthesis. Advances in Photosynthesis and Respiration. Vol. 11. Pp. 253-264. Springer, Dordrecht: 2001. 10.1007/0-306-48148-0_14 DOI
Rutherford A.W., Govindjee G., Inoue Y.: Charge accumulation and photochemistry in leaves studied by thermoluminescence and delayed light emission. – PNAS 81: 1107-1111, 1984. 10.1073/pnas.81.4.1107 PubMed DOI PMC
Shen J.-R., Kamiya N.: Crystallization and the crystal properties of the oxygen-evolving photosystem II from Synechococcus vulcanus. – Biochemistry 39: 14739-14744, 2000. 10.1021/bi001402m PubMed DOI
Shibata M., Katoh H., Sonoda M. et al..: Genes essential to sodium-dependent bicarbonate transport in cyanobacteria: Function and phylogenetic analysis. – J. Biol. Chem. 277: 18658-18664, 2002. 10.1074/jbc.M112468200 PubMed DOI
Shibata M., Ohkawa H., Kaneko T. et al..: Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: Genes involved and their phylogenetic relationship with homologous genes in other organisms. – PNAS 98: 11789-11794, 2001. 10.1073/pnas.191258298 PubMed DOI PMC
Umena Y., Kawakami K., Shen J.-R., Kamiya N.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. – Nature 473: 55-60, 2011. 10.1038/nature09913 PubMed DOI
Vernon L.P.: Photosynthesis and the Charles F. Kettering research laboratory. – Photosynth. Res. 76: 379-388, 2003. 10.1023/A:1024902906251 PubMed DOI
Vernon L.P., Yamamoto H.Y., Ogawa T.: Partially purified photosynthetic reaction centers from plant tissues. – PNAS 63: 911-917, 1969. 10.1073/pnas.63.3.911 PubMed DOI PMC
Xu M., Bernát G., Singh A. et al..: Properties of mutants of Synechocystis sp. strain PCC 6803 lacking inorganic carbon sequestration systems. – Plant Cell Physiol. 49: 1672-1677, 2008. 10.1093/pcp/pcn139 PubMed DOI
Yamamoto H.Y., Nakayama T.O.M., Chichester C.O.: Studies on the light and dark interconversions of leaf xanthophylls. – Arch. Biochem. Biophys. 97: 168-173, 1962. 10.1016/0003-9861(62)90060-7 PubMed DOI
Zeiger E., Iino M., Shimazaki K., Ogawa T.: The blue-light response of stomata: Mechanism and function. – In: Zeiger E., Farquhar G.D., Cowan I.R. (ed.): Stomatal Function. Pp. 209-227. Stanford University Press, Stanford: 1987.
Zhang P., Battchikova N., Jansen T. et al..: Expression and functional roles of the two distinct NDH-1 complexes and the carbon acquisition complex NdhD3/NdhF3/CupA/Sll1735 in Synechocystis sp. PCC 6803. – Plant Cell 16: 3326-3340, 2004. 10.1105/tpc.104.026526 PubMed DOI PMC