Heat-induced F0-fluorescence rise is not an indicator of severe tissue necrosis in thermotolerance assays of young and mature leaves of a tropical tree species, Calophyllum inophyllum
Jazyk angličtina Země Česko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40270906
PubMed Central
PMC12012419
DOI
10.32615/ps.2025.004
PII: PS63046
Knihovny.cz E-zdroje
- Klíčová slova
- chlorophyll a fluorescence, global warming, heat tolerance, necrosis, tropical trees,
- MeSH
- Calophyllum * fyziologie metabolismus MeSH
- chlorofyl a MeSH
- chlorofyl metabolismus MeSH
- fluorescence MeSH
- listy rostlin * fyziologie metabolismus MeSH
- nekróza MeSH
- stromy fyziologie MeSH
- termotolerance * fyziologie MeSH
- tropické klima MeSH
- vysoká teplota * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorofyl a MeSH
- chlorofyl MeSH
In heating experiments with leaves, the temperature at which dark-level F0 chlorophyll a fluorescence begins to rise, Tcrit, is widely used as an indicator of photosystem II thermotolerance. However, little is known about how Tcrit correlates with irreversible leaf tissue damage. Young and mature leaves of the tropical tree species Calophyllum inophyllum were heated stepwise from 30 to 55°C, at 1°C min-1. Tcrit was 47°C in young leaves and 49°C in mature leaves. Contrary to the higher Tcrit in mature leaves, heating to 55°C elicited greater tissue damage in mature than in young leaves. Young and mature leaves heated to their respective Tcrit or Tcrit + 2°C exhibited no or little tissue necrosis after 14 d of post-culture. It is concluded that measurements of the temperature-dependent F0 fluorescence rise underestimate the thermal thresholds above which significant irreversible leaf damage occurs.
Zobrazit více v PubMed
Arnold P.A., Briceño V.F., Gowland K.M. et al..: A high-throughput method for measuring critical thermal limits of leaves by chlorophyll imaging fluorescence. – Funct. Plant Biol. 48: 634-646, 2021. 10.1071/FP20344 PubMed DOI
Berry J., Björkman O.: Photosynthetic response and adaptation to temperature in higher plants. – Annu. Rev. Plant Physiol. 31: 491-543, 1980. 10.1146/annurev.pp.31.060180.002423 DOI
Bilger H.-W., Schreiber U., Lange O.L.: Determination of leaf heat resistance: comparative investigation of chlorophyll fluorescence changes and tissue necrosis methods. – Oecologia 63: 256-262, 1984. 10.1007/BF00379886 PubMed DOI
Braun V., Buchner U., Neuner G.: Thermotolerance of photosystem 2 of three alpine plant species under field conditions. – Photosynthetica 40: 587-595, 2002. 10.1023/A:1024312304995 DOI
Cunningham S.C., Read J.: Foliar temperature tolerance of temperate and tropical evergreen rain forest trees of Australia. – Tree Physiol. 26: 1435-1443, 2006. 10.1093/treephys/26.11.1435 PubMed DOI
Didden-Zophy B., Nobel P.S.: High temperature tolerance and heat acclimation of Opuntia bigelovii. – Oecologia 52: 176-180, 1982. 10.1007/BF00363833 PubMed DOI
Doughty C.E., Goulden M.L.: Are tropical forests near a high temperature threshold? – J. Geophys. Res. 113: G00B07, 2008. 10.1029/2007JG000632 DOI
Feeley K., Martinez-Villa J., Perez T. et al..: The thermal tolerances, distributions, and performances of tropical montane tree species. – Front. For. Glob. Change 3: 25, 2020. 10.3389/ffgc.2020.00025 DOI
Frolec J., Ilík P, Krchňák P. et al..: Irreversible changes in barley leaf chlorophyll fluorescence detected by the fluorescence temperature curve in a linear heating/cooling regime. – Photosynthetica 46: 537-546, 2008. 10.1007/s11099-008-0091-z DOI
Gauthey A., Kahmen A., Limousin J.-M. et al..: High heat tolerance, evaporative cooling, and stomatal decoupling regulate canopy temperature and their safety margins in three European oak species. – Glob. Change Biol. 30: e17439, 2024. 10.1111/gcb.17439 PubMed DOI
Guissé B., Srivastava A., Strasser R.J.: The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat-stressed leaves. – Arch. Sci. 48: 147-160, 1995. 10.5169/SEALS-740252 DOI
Hüve K., Bichele I., Rasulov B., Niinemets Ü.: When is it too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. – Plant Cell Environ. 34: 113-126, 2011. 10.1111/j.1365-3040.2010.02229.x PubMed DOI
Chen S., Yang J., Zhang M. et al..: Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P. – Environ. Exp. Bot. 122: 126-140, 2016. 10.1016/j.envexpbot.2015.09.011 DOI
Ilík P., Špundová M., Šicner M. et al..: Estimating heat tolerance of plants by ion leakage: a new method based on gradual heating. – New Phytol. 218: 1278-1287, 2018. 10.1111/nph.15097 PubMed DOI
Kautsky H., Hirsch A.: Neue Versuche zur Kohlensäureassimilation. [New experiments on carbonic acid assimilation.] – Naturwissenschaften 19: 964, 1931. [In German] 10.1007/BF01516164 DOI
Krause G.H., Cheesman A.W., Winter K. et al..: Thermal tolerance, net CO2 exchange and growth of a tropical tree species, Ficus insipida, cultivated at elevated daytime and nighttime temperatures. – J. Plant Physiol. 170: 822-827, 2013. 10.1016/j.jplph.2013.01.005 PubMed DOI
Krause G.H., Winter K., Krause B. et al..: High-temperature tolerance of a tropical tree, Ficus insipida: methodological reassessment and climate change considerations. – Funct. Plant Biol. 37: 890-900, 2010. 10.1071/FP10034 DOI
Krause G.H., Winter K., Krause B., Virgo A.: Light-stimulated heat tolerance in leaves of two neotropical tree species, Ficus insipida and Calophyllum longifolium. – Funct. Plant Biol. 42: 42-51, 2015. 10.1071/FP14095 PubMed DOI
Kullberg A.T., Coombs L., Ahuanari R.D.S. et al..: Leaf thermal safety margins decline at hotter temperatures in a natural warming ‘experiment’ in the Amazon. – New Phytol. 241: 1447-1463, 2024. 10.1111/nph.19413 PubMed DOI
Lange O.L.: Die Hitzeresistenz einheimischer immer- und wintergrüner Pflanzen im Jahresverlauf. [Heat resistance of native ever- and wintergreen plants during the annual cycle.] – Planta 56: 666-683, 1961. [In German] 10.1007/BF01928210 DOI
Larcher W., Wagner J.: Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand. [Temperature limits of CO2-uptake and temperature resistance of leaves of mountain plants in the vegetation-active state.] – Oecol. Plantarum 11: 361-374, 1976. [In German] https://www.researchgate.net/publication/285014746_Temperaturgrenzen_der_CO2-Aufnahme_und_Temperaturresistenz_der_Blatter_von_Gebirgspflanzen_im_vegetationsaktiven_Zustand
Lazár D., Ilík P.: High-temperature induced chlorophyll fluorescence changes in barley leaves. Comparison of the critical temperatures determined from fluorescence induction and from fluorescence temperature curve. – Plant Sci. 124: 159-164, 1997. 10.1016/S0168-9452(97)04602-5 DOI
Lazár D., Ilík P., Nauš J.: An appearance of K-peak in fluorescence induction depends on the acclimation of barley leaves to higher temperatures. – J. Lumin. 72-74: 595-596, 1997. 10.1016/S0022-2313(96)00293-1 DOI
Lorenz R.W.: High temperature tolerance of forest trees. Technical Bulletin No. 141. Pp. 25. University of Minnesota, Agricultural Experiment Station, St. Paul: 1939. https://conservancy.umn.edu/server/api/core/bitstreams/8a9da114-87ca-4f61-a952-146919884b09/content
Middleby K.B., Cheesman A.W., Cernusak L.A.: Impacts of elevated temperature and vapour pressure deficit on leaf gas exchange and plant growth across six tropical rainforest tree species. – New Phytol. 243: 648-661, 2024. 10.1111/nph.19822 PubMed DOI
Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. – J. Exp. Bot. 64: 3983-3998, 2013. 10.1093/jxb/ert208 PubMed DOI
Nauš J., Dvořák R., Kuropatwa R., Mašláň M.: Transitions in the thylakoid membranes of barley leaves studied by chlorophyll fluorescence temperature curve. – Photosynthetica 27: 563-570, 1992b. https://kramerius.lib.cas.cz/view/uuid:fcb05b20-1125-4632-b113-863d3f418fe3?page=uuid:f13b46b2-e500-4477-873a-4312802eea8e
Nauš J., Kuropatwa R., Klinkovskÿ T. et al..: Heat injury of barley leaves detected by the chlorophyll fluorescence temperature curve. – BBA-Bioenergetics 1101: 359-362, 1992a. 10.1016/0005-2728(92)90093-H DOI
Neuner G., Buchner O.: The dose makes the poison: the longer the heat lasts, the lower the temperature for functional damage and impairment. – Environ. Exp. Bot. 212: 105305, 2023. 10.1016/j.envexpbot.2023.105395 DOI
Niinemets Ü.: When leaves go over the thermal edge. – Plant Cell Environ. 41: 1247-1250, 2018. 10.1111/pce.13184 PubMed DOI
O'Sullivan O.S., Heskel M.A., Reich P.B. et al..: Thermal limits of leaf metabolism across biomes. – Glob. Change Biol. 23: 209-223, 2017. 10.1111/gcb.13477 PubMed DOI
Posch B.C., Hammer J., Atkin O.K. et al..: Wheat photosystem II heat tolerance responds dynamically to short- and long-term warming. – J. Exp. Bot. 73: 3268-3282, 2022. 10.1093/jxb/erac039 PubMed DOI PMC
POWO: Plants of the world online. Royal Botanic Gardens, Kew, 2024. Available at: https://powo.science.kew.org/.
Sapper I.: Versuche zur Hitzeresistenz der Pflanzen. [Experiments on the heat resistance of plants.] – Planta 23: 518-556, 1935. [In German] 10.1007/BF01914014 DOI
Schreiber U., Berry J.A.: Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. – Planta 136: 233-238, 1977. 10.1007/BF00385990 PubMed DOI
Schreiber U., Schliwa U., Bilger W.: Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. – Photosynth. Res. 10: 51-62, 1986. 10.1007/BF00024185 PubMed DOI
Slot M., Cala D., Aranda J. et al..: Leaf heat tolerance of 147 tropical forest species varies with elevation and leaf functional traits, but not with phylogeny. – Plant Cell Environ. 44: 2414-2427, 2021. 10.1111/pce.14060 PubMed DOI
Strasser R.J., Tsimilli-Michael M., Srivastava A.: Analysis of the chlorophyll a fluorescence transient. – In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration. Pp. 321-362. Springer, Dordrecht: 2004. 10.1007/978-1-4020-3218-9_12 DOI
Tiwari R., Gloor E., da Cruz W.J.A. et al..: Photosynthetic quantum efficiency in south-eastern Amazonian trees may be already affected by climate change. – Plant Cell Environ. 44: 2428-2439, 2021. 10.1111/pce.13770 PubMed DOI
Weng J.-H., Lai M.-F.: Estimating heat tolerance among plant species by two chlorophyll fluorescence parameters. – Photosynthetica 43: 439-444, 2005. 10.1007/s11099-005-0070-6 DOI
Winter K., Krüger Nuñez C.R., Slot M., Virgo A.: In thermotolerance tests of tropical tree leaves, the chlorophyll fluorescence parameter Fv/Fm measured soon after heat exposure is not a reliable predictor of tissue necrosis. – Plant Biol. 27: 146-153, 2025. 10.1111/plb.13732 PubMed DOI PMC
Winter K.: Are tropical forests approaching critical temperature thresholds? – Plant Biol. 26: 495-498, 2024. 10.1111/plb.13638 PubMed DOI
Wright S.J., Muller-Landau H.C., Schipper J.: The future of tropical species on a warmer planet. – Conserv. Biol. 23: 1418-1426, 2009. 10.1111/j.1523-1739.2009.01337.x PubMed DOI
Yeh D.M., Hsu P.Y.: Heat tolerance in English ivy as measured by an electrolyte leakage technique. – J. Hortic. Sci. Biotech. 79: 298-302, 2004. 10.1080/14620316.2004.11511764 DOI
Zhu L., Bloomfield K.J., Hocart C.H. et al..: Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. – Plant Cell Environ. 41: 1251-1262, 2018. 10.1111/pce.13133 PubMed DOI
Zhu L., Scafaro A.P., Vierling E. et al..: Heat tolerance of a tropical–subtropical rainforest tree species Polyscias elegans: time-dependent dynamic responses of physiological thermostability and biochemistry. – New Phytol. 241: 715-731, 2024. 10.1111/nph.19356 PubMed DOI