Relative importance of chlorophyll metabolic genes for light-induced greening of potato tubers
Language English Country Czech Republic Media electronic-ecollection
Document type Journal Article
PubMed
40270909
PubMed Central
PMC12012421
DOI
10.32615/ps.2025.003
PII: PS63037
Knihovny.cz E-resources
- Keywords
- chlorophyll biosynthesis, chlorophyll degradation, chlorophyll metabolic pathway, tuber greening,
- MeSH
- Chlorophyll * metabolism biosynthesis MeSH
- Plant Tubers * radiation effects metabolism genetics MeSH
- Gene Expression Regulation, Plant radiation effects MeSH
- Genes, Plant MeSH
- Plant Proteins metabolism genetics MeSH
- Solanum tuberosum * genetics radiation effects metabolism MeSH
- Light * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chlorophyll * MeSH
- Plant Proteins MeSH
Potato tuber greening occurs due to the chlorophyll accumulation upon exposure to light, however, fundamental information on tuber chlorophyll metabolism is lacking. We measured the effect of varying light exposure (0, 48, 96, and 168 h) on chlorophyll concentration and gene expression of enzymes in the chlorophyll metabolic pathway in the potato varieties that differ in greening propensity. Greening was associated with the upregulation of genes involved in chlorophyll biosynthesis, particularly glutamyl-tRNA reductase 1, magnesium-chelatase subunit H, and magnesium-protoporphyrin IX monomethyl ester cyclase, and downregulation of genes involved in chlorophyll cycling and degradation, including chlorophyllide a oxygenase, and pheophorbide a oxygenase. Our findings suggest that relative resistance to tuber greening propensity may be due to a weaker upregulation of chlorophyll biosynthesis genes and weaker downregulation of chlorophyll degradation genes that occurs in susceptible varieties. The association of these biosynthesis and degradation genes with greening susceptibility may provide possible breeding targets for the future development of more greening-resistant varieties.
See more in PubMed
Alawady A.E., Grimm B.: Tobacco Mg protoporphyrin IX methyltransferase is involved in inverse activation of Mg porphyrin and protoheme synthesis. – Plant J. 41: 282-290, 2005. 10.1111/j.1365-313X.2004.02291.x PubMed DOI
Anstis P.J.P., Northcote D.H.: Development of chloroplasts from amyloplasts in potato tuber discs. – New Phytol. 72: 449-463, 1973. 10.1111/j.1469-8137.1973.tb04394.x DOI
Bamberg J., Moehninsi, Navarre R., Suriano J.: Variation for tuber greening in the diploid wild potato Solanum microdontum. – Am. J. Potato Res. 92: 435-443, 2015. 10.1007/s12230-015-9454-8 DOI
Chen M.: Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. – Annu. Rev. Biochem. 83: 317-340, 2014. 10.1146/annurev-biochem-072711-162943 PubMed DOI
Diretto G., Al-Babili S., Tavazza R. et al..: Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. – PLoS ONE 2: e350, 2007. 10.1371/journal.pone.0000350 PubMed DOI PMC
Espineda C.E., Linford A.S., Devine D., Brusslan J.A.: The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. – PNAS 96: 10507-10511, 1999. 10.1073/pnas.96.18.10507 PubMed DOI PMC
Ha J., Moon K., Kim M. et al..: The laccase promoter of potato confers strong tuber-specific expression in transgenic plants. – Plant Cell Tiss. Org. Cult. 120: 57-68, 2015. 10.1007/s11240-014-0578-1 DOI
Jung K.-H., Hur J., Ryu C.-H. et al..: Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. – Plant Cell Physiol. 44: 463-472, 2003. 10.1093/pcp/pcg064 PubMed DOI
Kumar A.M., Csankovszki G., Söll D.: A second and differentially expressed glutamyl-tRNA reductase gene from Arabidopsis thaliana. – Plant Mol. Biol. 30: 419-426, 1996. 10.1007/BF00049321 PubMed DOI
Li M., Song B., Zhang Q. et al..: A synthetic tuber-specific and cold-induced promoter is applicable in controlling potato cold-induced sweetening. – Plant Physiol. Biochem. 67: 41-47, 2013. 10.1016/j.plaphy.2013.02.020 PubMed DOI
Liebers M., Grübler B., Chevalier F. et al..: Regulatory shifts in plastid transcription play a key role in morphological conversions of plastids during plant development. – Front. Plant Sci. 8: 23, 2017. 10.3389/fpls.2017.00023 PubMed DOI PMC
Liu X., Li Y., Zhong S.: Interplay between light and plant hormones in the control of Arabidopsis seedling chlorophyll biosynthesis. – Front. Plant Sci. 8: 1433, 2017. 10.3389/fpls.2017.01433 PubMed DOI PMC
Matsumoto F., Obayashi T., Sasaki-Sekimoto Y. et al..: Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. – Plant Physiol. 135: 2379-2391, 2004. 10.1104/pp.104.042408 PubMed DOI PMC
McCormac A.C., Fischer A., Kumar A.M. et al..: Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. – Plant J. 25: 549-561, 2001. 10.1046/j.1365-313x.2001.00986.x PubMed DOI
McCormac A.C., Terry M.J.: Light-signalling pathways leading to the co-ordinated expression of HEMA1 and Lhcb during chloroplast development in Arabidopsis thaliana. – Plant J. 32: 549-559, 2002. 10.1046/j.1365-313X.2002.01443.x PubMed DOI
Meinecke L., Alawady A., Schroda M. et al..: Chlorophyll-deficient mutants of Chlamydomonas reinhardtii that accumulate magnesium protoporphyrin IX. – Plant Mol. Biol. 72: 643-658, 2010. 10.1007/s11103-010-9604-9 PubMed DOI PMC
Murashige R., Skoog F.: A revised medium for rapid growth and bio assays with tobacco tissue culture. – Physiol. Plantarum 15: 473-479, 1962. 10.1111/j.1399-3054.1962.tb08052.x DOI
Nicot N., Hausman J.-F., Hoffmann L., Evers D.: Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. – J. Exp. Bot. 56: 2907-2914, 2005. 10.1093/jxb/eri285 PubMed DOI
Ohmiya A., Hirashima M., Yagi M. et al..: Identification of genes associated with chlorophyll accumulation in flower petals. – PLoS One 9: e113738, 2014. 10.1371/journal.pone.0113738 PubMed DOI PMC
Ohmiya A., Sasaki K., Nashima K. et al..: Transcriptome analysis in petals and leaves of chrysanthemums with different chlorophyll levels. – BMC Plant Biol. 17: 202, 2017. 10.1186/s12870-017-1156-6 PubMed DOI PMC
Okamoto H., Ducreux L.J.M., Allwood J.W. et al..: Light regulation of chlorophyll and glycoalkaloid biosynthesis during tuber greening of potato S. tuberosum. – Front. Plant Sci. 11: 753, 2020. 10.3389/fpls.2020.00753 PubMed DOI PMC
Porra R.J., Thompson W.A., Kriedemann P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. – BBA-Bioenergetics 975: 384-394, 1989. 10.1016/S0005-2728(89)80347-0 DOI
Pružinská A., Tanner G., Aubry S. et al..: Chlorophyll breakdown in senescent Arabidopsis leaves. Characterization of chlorophyll catabolites and of chlorophyll catabolic enzymes involved in the degreening reaction. – Plant Physiol. 139: 52-63, 2005. 10.1104/pp.105.065870 PubMed DOI PMC
Stephenson P.G., Terry M.J.: Light signalling pathways regulating the Mg-chelatase branchpoint of chlorophyll synthesis during de-etiolation in Arabidopsis thaliana. – Photoch. Photobio. Sci. 7: 1243-1252, 2008. 10.1039/b802596g PubMed DOI
Su Q., Frick G., Armstrong G., Apel K.: POR C of Arabidopsis thaliana: a third light- and NADPH-dependent proto-chlorophyllide oxidoreductase that is differentially regulated by light. – Plant Mol. Biol. 47: 805-813, 2001. 10.1023/A:1013699721301 PubMed DOI
Tanaka R., Tanaka A.: Tetrapyrrole biosynthesis in higher plants. – Annu. Rev. Plant Biol. 58: 321-346, 2007. 10.1146/annurev.arplant.57.032905.105448 PubMed DOI
Tanios S., Eyles A., Corkrey R. et al..: Quantifying risk factors associated with light-induced potato tuber greening in retail stores. – PLoS ONE 15: e0235522, 2020a. 10.1371/journal.pone.0235522 PubMed DOI PMC
Tanios S., Eyles A., Tegg R.S., Wilson C.: Potato tuber greening: a review of predisposing factors, management and future challenges. – Am. J. Potato Res. 95: 248-257, 2018. 10.1007/s12230-018-9648-y DOI
Tanios S., Tegg R.S., Eyles A. et al..: Potato tuber greening risk is associated with tuber nitrogen content. – Am. J. Potato Res. 97: 360-366, 2020b. 10.1007/s12230-020-09786-0 DOI
Tanios S., Thangavel T., Eyles A. et al..: Suberin deposition in potato periderm: a novel resistance mechanism against tuber greening. – New Phytol. 225: 1273-1284, 2020c. 10.1111/nph.16334 PubMed DOI
Ujwal M.L., McCormac A.C., Goulding A. et al..: Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidopsis thaliana: expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling. – Plant Mol. Biol. 50: 81-89, 2002. 10.1023/A:1016081114758 PubMed DOI
Wang J., Li J., Chen W. et al..: The changes in chlorophyll, solanine, and phytohormones during light-induced greening in postharvest potatoes. – Postharvest Biol. Tec. 219: 113291, 2025. 10.1016/j.postharvbio.2024.113291 DOI
Wang X., Huang R., Quan R.: Mutation in Mg-protoporphyrin IX monomethyl ester cyclase decreases photosynthesis capacity in rice. – PLoS ONE 12: e0171118, 2017. 10.1371/journal.pone.0171118 PubMed DOI PMC
Yuan M., Zhao Y.-Q., Zhang Z.-W. et al..: Light regulates transcription of chlorophyll biosynthetic genes during chloroplast biogenesis. – Crit. Rev. Plant Sci. 36: 35-54, 2017. 10.1080/07352689.2017.1327764 DOI
Zhu Y.S., Merkle-Lehman D.L., Kung S.D.: Light-induced transformation of amyloplasts into chloroplasts in potato tubers. – Plant Physiol. 75: 142-145, 1984. 10.1104/pp.75.1.142 PubMed DOI PMC