Comprehensive techno-economic optimization and performance analysis of molten salt concentrated solar power tower plants in Algeria

. 2025 Apr 25 ; 15 (1) : 14456. [epub] 20250425

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40280986
Odkazy

PubMed 40280986
PubMed Central PMC12032041
DOI 10.1038/s41598-025-97236-4
PII: 10.1038/s41598-025-97236-4
Knihovny.cz E-zdroje

This paper presents a comprehensive techno-economic analysis of three molten salt Concentrated Solar Power (CSP) tower plants located in the regions of Mechria, Adrar, and Tindouf in Algeria. The study evaluates the thermal efficiency, economic feasibility, and performance of these CSP using the System Advisor Model (SAM) software, which accurately models Direct Normal Irradiance (DNI), a critical factor influencing plant performance. Key parameters analyzed include Solar Multiple (SM), Thermal energy storage (TES) hours, capacity factor (CF), and the Levelized Cost of Energy (LCOE). The results demonstrate that an optimal heliostat field configuration with a SM of 1.8 and 10 h of TES achieves a capacity factor of 51.49%, with a minimum LCOE of 0.097 $/kWh. In Mechria, with operational and maintenance costs projected at 2.51 million dollars. For the Adrar region, a SM of 1.6 and TES of 2 h yield an LCOE of 0.18 $/kWh at a capacity factor of 24.03%. Similarly, in Tindouf, a SM of 1.6 and TES of 8 h result in a capacity factor of 18.95% and an LCOE of 0.17 $/kWh. The analysis reveals that the design of CSP systems, particularly the combination of solar Multiple and TES, plays a pivotal role in optimizing the economic performance of the plants, This approach enables researchers to save time and costs by using satellite-derived DNI estimations, enhancing data accuracy and optimizing CSP deployment.

Zobrazit více v PubMed

1. R. Tascioni, A. Arteconi, L. Del Zotto, and L. Cioccolanti, “Fuzzy logic energy management strategy of a multiple latent heat thermal storage in a small-scale concentrated solar power plant,” Energies (Basel), vol. 13, no. 11, p. 2733, 2020.

2. A. Rouibah, D. Benazzouz, R. Kouider, A. Al-Kassir, J. García-Sanz-Calcedo, and K. Maghzili, “Solar Power Tower plants of molten salt external receivers in Algeria: analysis of Direct Normal Irradiance on performance,” Applied Sciences, vol. 8, no. 8, p. 1221, 2018.

3. E. B. Agyekum and V. I. Velkin, “Optimization and techno-economic assessment of concentrated solar power (CSP) in South-Western Africa: A case study on Ghana,” Sustainable Energy Technologies and Assessments, vol. 40, p. 100763, 2020.

4. M. Hosseini, S. Katragadda, J. Wojtkiewicz, R. Gottumukkala, A. Maida, and T. L. Chambers, “Direct normal irradiance forecasting using multivariate gated recurrent units,” Energies (Basel), vol. 13, no. 15, p. 3914, 2020.

5. L. Mohamed, R. Abdelkader, M. Guemana, and L. Mohammed, “An analytical study of Direct Normal Irradiaance for concentrated solar energy applications for the mechria region of Algeria.” [Online]. Available: http://as-proceeding.com/:Konya,Turkeyhttps://www.icaens.com/

6. G. Shi, Z. Sun, J. Li, and Y. He, “Fast scheme for determination of Direct Normal Irradiance. Part I: New aerosol parameterization and performance assessment,” Solar Energy, vol. 199, pp. 268–277, 2020.

7. F. M. Lopes, R. Conceição, H. G. Silva, R. Salgado, and M. Collares-Pereira, “Improved ECMWF forecasts of Direct Normal Irradiance: A tool for better operational strategies in concentrating solar power plants,” Renew Energy, vol. 163, pp. 755–771, 2021.

8. D. Kesseli, M. Wagner, R. Guédez, and C. S. Turchi, “CSP-plant modeling guidelines and compliance of the system advisor model (SAM),” in AIP Conference Proceedings, AIP Publishing, 2019.

9. T. H. C. Kelvin, H. Brindley, N. Ekins-Daukes, and R. Escobar, “Developing automated methods to estimate spectrally resolved Direct Normal Irradiance for solar energy applications,” Renew Energy, vol. 173, pp. 1070–1086, 2021.

10. Z. Li, L. Cui, B. Li, and X. Du, “Effects of SiO2 nanoparticle dispersion on the heat storage property of the solar salt for solar power applications,” Energies (Basel), vol. 14, no. 3, p. 703, 2021.

11. A. Boretti, “Optimizing Concentrated Solar Power: High-Temperature Molten Salt Thermal Energy Storage for Enhanced Efficiency,” Energy Storage, vol. 6, no. 7, p. e70059, 2024.

12. M. I. Khan et al., “The economics of concentrating solar power (CSP): Assessing cost competitiveness and deployment potential,” Renewable and Sustainable Energy Reviews, vol. 200, p. 114551, 2024, doi: https://doi.org/10.1016/j.rser.2024.114551.

13. X. Zhuang, X. Xu, W. Liu, and W. Xu, “LCOE analysis of tower concentrating solar power plants using different molten-salts for thermal energy storage in China,” Energies (Basel), vol. 12, no. 7, p. 1394, 2019.

14. Md. S. Hossain, Md. A. I. Rahat, Md. S. H. Khan, S. Shajid, S. Salehin, and Md. R. Karim, “Techno-economic assessment of various concentrating solar power (CSP) technologies for large-scale sustainable power generation in Bangladesh,” Energy Convers Manag, vol. 321, p. 119079, 2024, doi: https://doi.org/10.1016/j.enconman.2024.119079.

15. C. Augustine, A. Zolan, and K. Armijo, “Analysis of Gaps in Techno-Economic Analysis to Advance Heliostat Technologies for Concentrating Solar-Thermal Power,” J Sol Energy Eng, vol. 146, no. 6, p. 061002, 2024.

16. A. Khosravi, M. Malekan, J. J. G. Pabon, X. Zhao, and M. E. H. Assad, “Design parameter modelling of solar power tower system using adaptive neuro-fuzzy inference system optimized with a combination of genetic algorithm and teaching learning-based optimization algorithm,” J Clean Prod, vol. 244, p. 118904, 2020, doi: https://doi.org/10.1016/j.jclepro.2019.118904.

17. “SAM, Weather Data, (n.d.), https://SAM.nrel.gov/weather-data.”

18. K. Hirbodi, M. Enjavi-Arsanjani, and M. Yaghoubi, “Techno-economic assessment and environmental impact of concentrating solar power plants in Iran,” Renewable and Sustainable Energy Reviews, vol. 120, p. 109642, 2020.

19. K. E. Elfeky, A. G. Mohammed, N. Ahmed, L. Lu, and Q. Wang, “Thermal and economic evaluation of phase change material volume fraction for thermocline tank used in concentrating solar power plants,” Appl Energy, vol. 267, p. 115054, 2020.

20. O. Achkari and A. El Fadar, “Latest developments on TES and CSP technologies–Energy and environmental issues, applications and research trends,” Appl Therm Eng, vol. 167, p. 114806, 2020.

21. “Data base system advisor model SAM model (2021.12.02),” 2021.

22. A. ATMANI and N.-E. MOUFFOK, “The economic consequences of variations in oil prices on the conduct of the monetary policy of the Bank of Algeria,” Economic Studies, vol. 21, no. 02, 2021.

23. N. T. Nguyen and M. Ha-Duong, “Economic potential of renewable energy in Vietnam’s power sector,” Energy Policy, vol. 37, no. 5, pp. 1601–1613, 2009.

24. R. Chen, Z. Rao, S. Liao, G. Liu, and D. Li, “Analysis and optimization the size of heliostat field and thermal energy storage for solar Power Tower,” Energy Procedia, vol. 158, pp. 712–717, 2019.

25. S. Boudaoud, A. Khellaf, K. Mohammedi, and O. Behar, “Thermal performance prediction and sensitivity analysis for future deployment of molten salt cavity receiver solar power plants in Algeria,” Energy Convers Manag, vol. 89, pp. 655–664, 2015.

26. “National Renewable Energy Laboratory. (2022, October 21). Planta Solar 20 - PS20. SolarPACES. https://solarpaces.nrel.gov/project/planta-solar-20-ps20.”

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...