Effect of Two-Stage Water Addition on Consistency of Processed Cheese: Physicochemical, Mechanical, Thermal, and Organoleptic Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2025/007
tomas bata university in Zlin
PubMed
40282762
PubMed Central
PMC12027093
DOI
10.3390/foods14081361
PII: foods14081361
Knihovny.cz E-zdroje
- Klíčová slova
- processed cheese, textural properties, thermal properties, tribological properties, viscoelastic properties, water addition,
- Publikační typ
- časopisecké články MeSH
The current study investigated the impact of two-stage water addition on the selected properties of processed cheese (PC). In particular, the above-mentioned novel approach involved adding water in two stages during the PC manufacturing process. The effects of this process on the physicochemical, viscoelastic, textural, tribological, thermal, and organoleptic properties of PC were evaluated. For all examined PC samples, the elastic modulus consistently dominated over the viscous modulus (G' > G″) across the entire frequency range. Moreover, it was observed that a smaller amount of initial water addition during the melting process resulted in a slight increase in the values of both viscoelastic moduli. The control sample exhibited the lowest lightness values, while it also showed the highest level of yellow coloring, suggesting that the two-stage addition of water affected the color of the PC samples. The results showed that the two-stage addition of water significantly influenced the physicochemical, viscoelastic, textural, tribological, thermal, and organoleptic properties of PC, leading to a modified texture, and thermal stability. Moreover, firmer PC products were obtained when a greater initial water level (first dosage; in the range of 60 to 90%) was utilized. This study could provide valuable information on the development of high-quality PC products with tailored functional properties, which can be important for the dairy industry.
Zobrazit více v PubMed
Chen L., Liu H. Effect of emulsifying salts on the physicochemical properties of processed cheese made from Mozzarella. J. Dairy Sci. 2012;95:4823–4830. doi: 10.3168/jds.2012-5480. PubMed DOI
Tamime A.Y. Society of Dairy Technology Series. Blackwell Publishing Ltd.; Hoboken, NJ, USA: 2011. Processed cheese and analogues; pp. 1–24. DOI
El-Bakry M., Mehta B.M. Processed Cheese Science and Technology. Elsevier; Amsterdam, The Netherlands: 2022. Overview of processed cheese and its products; pp. 1–28. DOI
Kowalska M., Janas S., Woźniak M. Innovative application of the moisture analyzer for determination of dry mass content of processed cheese. Heat Mass Transf. 2018;54:3071–3080. doi: 10.1007/s00231-018-2358-7. DOI
Joyner H.S. Explaining food texture through rheology. Curr. Opin. Food Sci. 2018;21:7–14. doi: 10.1016/j.cofs.2018.04.003. DOI
Schädle C.N., Bader-Mittermaier S., Sanahuja S. The effect of corn dextrin on the rheological, tribological, and aroma release properties of a reduced-fat model of processed cheese spread. Molecules. 2022;27:1864. doi: 10.3390/molecules27061864. PubMed DOI PMC
Lee S.K., Klostermeyer H. The Effect of pH on the Rheological Properties of Reduced-fat Model Processed Cheese Spreads. LWT-Food Sci. Technol. 2001;34:288–292. doi: 10.1006/fstl.2001.0761. DOI
Salek R.N., Černíková M., Lorencová E., Pachlová V., Kůrová V., Šenkýřová J., Buňka F. The impact of Cheddar or white brined cheese with various maturity degrees on the processed cheese consistency: A comparative study. Int. Dairy J. 2020;111:104816. doi: 10.1016/j.idairyj.2020.104816. DOI
Prakash S., Tan D.D.Y., Chen J. Applications of Tribology in Studying Food Oral Processing and Texture Perception. Food Res. Int. 2013;54:1627–1635. doi: 10.1016/j.foodres.2013.10.010. DOI
Kapoor R., Metzger L.E. Process cheese: Scientific and technological. aspects. A review. Compr. Rev. Food Sci. Food Saf. 2008;7:194–214. doi: 10.1111/j.1541-4337.2008.00040.x. DOI
Monteiro R.R., Tavares D.Q., Kindstedt P.S., Gigante M.L. Effect of pH on microstructure and characteristics of cream cheese. J. Food Sci. 2009;74:C112–C117. doi: 10.1111/j.1750-3841.2008.01037.x. PubMed DOI
Kim J., Watkinson P., Matia-Merino L., Smith J.R., Golding M. Evaluation of formulation design on the physical and structural properties of commercial cream cheeses. Int. J. Food Sci. Technol. 2022;57:6422–6434. doi: 10.1111/ijfs.15950. DOI
Gliguem H., Ghorbel D., Grabielle-Madelmont C., Goldschmidt B., Lesieur S., Attia H., Ollivon M., Lesieur P. Water behavior in processed cheese spreads. J. Therm. Anal. Calorim. 2009;98:73–82. doi: 10.1007/s10973-009-0376-x. DOI
Marchesseau S., Cuq J.L. Water-holding capacity and characterization of protein interactions in processed cheese. J. Dairy Res. 1995;62:479–489. doi: 10.1017/S0022029900031174. DOI
Cheese and Processed Cheese. Determination of the Total Solid Content (Reference Method) ISO; Geneva, Switzerland: 2004.
Ruiz-Ramírez J., Arnau J., Serra X., Gou P. Effect of Ph(24), NaCl content and proteolysis index on the relationship between water content and texture parameters in biceps femoris and semimembranosus muscles in dry-cured ham. Meat Sci. 2006;72:185–194. doi: 10.1016/j.meatsci.2005.06.016. PubMed DOI
Habig K.H., Woydt M. Tribologie. In: Bender B., Göhlich D., editors. Dubbel Taschenbuch für den Maschinenbau 1: Grundlagen und Tabellen. Springer Vieweg; Berlin/Heidelberg, Germany: 2020.
Glumac M., Bosc V., Menut P., Ramaioli M., Restagno F., Mariot S., Mathieu V. Signal analysis to study the impact of tongue roughness on oral friction mechanisms with a custom-built tribometer. Biotribology. 2023;35–36:100257. doi: 10.1016/j.biotri.2023.100257. DOI
Šantová K., Salek R.N., Kůrová V., Mizera A., Lapčíková B., Vincová A., Zálešáková L., Kratochvílová A., Lorencová E., Vinter Š., et al. Potassium-based emulsifying salts in processed cheese: A rheological, textural, tribological, and thermal approach. J. Dairy Sci. 2024;107:7704–7717. doi: 10.3168/jds.2024-24939. PubMed DOI
Tylewicz U., Aganovic K., Vannini M., Toeofl S., Bortolotti V., Rosa M.D., Oey I., Heinz V. Effect of pulsed electric field treatment on water distribution of freeze-dried apple tissue evaluated with DSC and TD-NMR techniques. Innov. Food Sci. Emerg. Technol. 2016;37:352–358. doi: 10.1016/j.ifset.2016.06.012. ISSN 14668564. DOI
Du X., Li Y., Xia Y.T., Ai S.M., Liang J., Sang P., Ji X.L., Liu S.Q. Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods. Int. J. Mol. Sci. 2016;17:144. doi: 10.3390/ijms17020144. PubMed DOI PMC
Yudianti R., Karina M., Sakamoto M., Azuma J.-I. DSC analysis on water state of salvia hydrogels. Macromol. Res. 2009;17:1015–1020. doi: 10.1007/BF03218650. ISSN 1598-5032. DOI
Wang H.H., Sun D.W. Assessment of Cheese Browning Affected by Baking Conditions Using Computer Vision. J. Food Eng. 2003;56:339–345. doi: 10.1016/S0260-8774(02)00159-0. DOI
Sensory Analysis: General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. ISO; Geneva, Switzerland: 2012.
Sensory Analysis: General Guidance for the Design of Test Rooms. ISO; Geneva, Switzerland: 2007.
Statistical Interpretation of Data—Tests for Departure from the Normal Distribution for the Small Amount of the Data. ISO; Geneva, Switzerland: 1997.
Guinee T.P., Carić M., Kaláb M. Pasteurized processed cheese and substitute/imitation cheese products. In: Fox P.H., editor. Cheese: Chemistry, Physics and Microbiology. 3rd ed. Elsevier; London, UK: 2004. pp. 349–394. Volume 2 Major Cheese Groups. DOI
Weiserová E., Doudová L., Galiová L., Žák L., Michálek J., Janiš R., Buňka F. The effect of combinations of sodium phosphates in binary mixtures on selected texture parameters of processed cheese spreads. Int. Dairy J. 2011;21:979–986. doi: 10.1016/j.idairyj.2011.06.006. DOI
Salek R.N., Černíková M., Nagyová G., Kuchař D., Bačová H., Minarčíková L., Buňka F. The effect of composition of ternary mixtures containing phosphate and citrate emulsifying salts on selected textural properties of spreadable processed cheese. Int. Dairy J. 2015;44:37–43. doi: 10.1016/j.idairyj.2014.12.009. DOI
Glass K., Doyle M.E. Ph.D. Thesis. FRI Briefings, Food Research Institute, University of Wisconsin; Madison, WI, USA: 2005. Safety of Processed Cheese.
Winter H.H., Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J. Rheol. 1986;30:367–382. doi: 10.1122/1.549853. DOI
Lee S.K., Buwalda R.J., Euston S.R., Foegeding E.A., McKenna A.B. Changes in the rheology and microstructure of process cheese during cooking. LWT-Food Sci. Technol. 2003;36:339–345. doi: 10.1016/S0023-6438(03)00012-4. DOI
Sołowiej B.G., Nastaj M., Szafrańska J.O., Muszyński S., Gustaw W., Tomczyńska-Mleko M., Mleko S. Effect of emulsifying salts replacement with polymerised whey protein isolate on textural, rheological and melting properties of acid casein model processed cheeses. Int. Dairy J. 2020;105:104694. doi: 10.1016/j.idairyj.2020.104694. DOI
Dimitreli G., Thomareis A.S. Texture evaluation of block-type processed cheese as a function of chemical composition and in relation to its apparent viscosity. J. Food Eng. 2007;79:1364–1373. doi: 10.1016/j.jfoodeng.2006.04.043. DOI
Nagyová G., Buňka F., Salek R.N., Černíková M., Mančík P., Grůber T., Kuchař D. Use of sodium polyphosphates with different linear lengths in the production of spreadable processed cheese. J. Dairy Sci. 2014;97:111–122. doi: 10.3168/jds.2013-7210. PubMed DOI
Ningtyas D.W., Bhandari B., Bansal N., Prakash S. A tribological analysis of cream cheeses manufactured with different fat content. Int. Dairy J. 2017;73:155–165. doi: 10.1016/j.idairyj.2017.06.005. DOI
Brune W.H. First Law of Thermodynamics. E-Education Institute, College of Earth and Mineral Sciences; State College, PA, USA: 2020.
Anonymus . Thermal Analysis to Determine Various Forms of Water Present in Hydrogels. TA Instruments; New Castle, DE, USA: 2022.
Clausse D. Differential thermal analysis, differential scanning calorimetry, and emulsions. J. Therm. Anal. Calorim. 2010;101:1071–1077. doi: 10.1007/s10973-010-0712-1. ISSN 1388-6150. DOI
Van der Sman R.G.M., BOER E. Predicting the initial freezing point and water activity of meat products from composition data. J. Food Eng. 2005;66:469–475. doi: 10.1016/j.jfoodeng.2004.04.018. ISSN 02608774. DOI
Wolfe J., Bryant G., Koster K.L. What is ‘unfreezable water’, how unfreezable is it and how much is there? CryoLetters. 2002;23:157–166. PubMed
Kristensen D., Hansen E., Arndal A., Trinderup R.A., Skibsted L.H. Influence of light and temperature on the color and oxidative stability of processed cheese. Int. Dairy J. 2001;11:837–843. doi: 10.1016/S0958-6946(01)00105-4. DOI
Milovanovic B., Djekic I., Miocinovic J., Djordjevic V., Lorenzo J.M., Barba F.J., Mörlein D., Tomasevic I. What Is the Color of Milk and Dairy Products and How Is It Measured? Foods. 2020;9:1629. doi: 10.3390/foods9111629. PubMed DOI PMC
Osthoff G., Slabber E., Kneifel W., Dürrschmid K. Flavours and flavourants, colours and pigment. In: Tamime A.Y., editor. Processed Cheese and Analogues. Wiley-Blackwell; West Sussex, UK: 2011. DOI
León K., Mery D., Pedreschi F., León J. Color measurement in L* a* b* units from RGB digital images. Food Res. Int. 2006;39:1084–1091. doi: 10.1016/j.foodres.2006.03.006. DOI
Kůrová V., Salek R.N., Vašina M., Vinklárková K., Zálešáková L., Gál R., Adámek R., Buňka F. The effect of homogenization and addition of polysaccharides on the viscoelastic properties of processed cheese sauce. J. Dairy Sci. 2022;105:6563–6577. doi: 10.3168/jds.2021-21520. PubMed DOI
Lee S.K., Anema S., Klostermeyer H. The influence of moisture content on the rheological properties of processed cheese spreads. Int. J. Food Sci. Technol. 2004;39:763–771. doi: 10.1111/j.1365-2621.2004.00842.x. DOI